Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(1): 130523, 2024 01.
Article in English | MEDLINE | ID: mdl-38006987

ABSTRACT

Inorganic polyphosphate (polyP) is an ancient polymer, which was proven to be a signalling molecule in the mammalian brain, mediating the communication between astrocytes via activation of P2Y1 purinoreceptors and modulating the activity of neurons. There is very limited information regarding the ability of polyP to transmit the information as an agonist of purinoreceptors in other cells and tissues. Here, we show that application of polyP to the suspension of primary thymocytes increases the concentration of intracellular calcium. PolyP evoked calcium signal was dependent on the presence of P2X inhibitors but not P2Y1 inhibitor. PolyP dependent increase in intracellular calcium concentration caused mild mitochondrial depolarization, which was dependent on inhibitors of purinoreceptors, extracellular calcium and inhibitor of mitochondrial calcium uniporter but wasn't dependent on cyclosporin A. Application of polyP modulated cell volume regulation machinery of thymocytes in calcium dependent manner. Molecular docking experiments revealed that polyP can potentially bind to several types of P2X receptors with binding energy similar to ATP - natural agonist of P2X purinoreceptors. Further molecular dynamics simulations with P2X4 showed that binding of one molecule of polyP dramatically increases permeability of this receptor-channel for water molecules. Thus, in this research we for the first time showed that polyP can interact with P2X receptors in thymocytes and modulate physiological processes.


Subject(s)
Calcium , Polyphosphates , Animals , Calcium/metabolism , Polyphosphates/pharmacology , Molecular Docking Simulation , Thymocytes/metabolism , Signal Transduction , Mammals/metabolism
2.
Pharmacol Rep ; 71(6): 1079-1087, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31629088

ABSTRACT

BACKGROUND: Cell volume regulation and volume-regulated anion channels are critical for cell survival in non-isosmotic conditions, and dysregulation of this system is detrimental. Although genes and proteins underlying this basic cellular machinery were recently identified, the pharmacology remains poorly explored. METHODS: We examined effects of 16 flavonoids on the regulatory volume decrease (RVD) of thymocytes under hypoosmotic stress assessed by light transmittance and on the activity of volume-sensitive chloride channel by patch-clamp technique. RESULTS: Comparison of effects of flavonoids on RVD revealed a group of four active substances with lehmannin being the strongest inhibitor (IC50 = 8.8 µM). Structure-functional comparison suggested that hydrophobicity brought about by methoxy, prenyl or lavandulyl groups as well as by the absence of glucosyl fragment together with localization of the phenyl ring B at the position C2 (which is at C3 in totally inactive isoflavones) are important structural determinants for the flavonoids activity as volume regulation inhibitors. All active flavonoids suppressed RVD under Gramicidin D-NMDG hypotonic stress conditions when cationic permeability was increased by an ionophore, gramicidin D, with all extracellular monovalent cations replaced with bulky NMDG+ suggesting that they target volume-sensitive anionic permeability. While effects of hispidulin and pulicarin were only partial, lehmannin and pinocembrin completely abolished RVD under Gramicidin D-NMDG conditions. In direct patch-clamp experiments, lehmannin and pinocembrin produced a strong inhibiting effect on the swelling-induced whole-cell chloride conductance in a voltage-independent manner. CONCLUSION: Lehmannin, pinocembrin, and possibly hispidulin and pulicarin may serve as leads for developing effective low-toxic immunomodulators.


Subject(s)
Chloride Channels/physiology , Flavonoids/pharmacology , Osmotic Pressure/drug effects , Thymocytes/physiology , Alkaloids/pharmacology , Animals , Cell Size/drug effects , Flavanones/pharmacology , Flavonoids/chemistry , Gramicidin , Patch-Clamp Techniques , Quinolizidines/pharmacology , Rats , Thymocytes/drug effects , Thymocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...