Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nano Lett ; 19(5): 3244-3255, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30950627

ABSTRACT

Coordinated collective electrochemical signals in multicellular assemblies, such as ion fluxes, membrane potentials, electrical gradients, and steady electric fields, play an important role in cell and tissue spatial organization during many physiological processes like wound healing, inflammatory responses, and hormone release. This mass of electric actions cumulates in an en masse activity within cell collectives which cannot be deduced from considerations at the individual cell level. However, continuously sampling en masse collective electrochemical actions of the global electrochemical activity of large-scale electrically coupled cellular assemblies with intracellular resolution over long time periods has been impeded by a lack of appropriate recording techniques. Here we present a bioelectrical interface consisting of low impedance vertical gold nanoelectrode interfaces able to penetrate the cellular membrane in the course of cellular adhesion, thereby allowing en masse recordings of intracellular electrochemical potentials that transverse electrically coupled NRK fibroblast, C2C12 myotube assemblies, and SH-SY5Y neuronal networks of more than 200,000 cells. We found that the intracellular electrical access of the nanoelectrodes correlates with substrate adhesion dynamics and that penetration, stabilization, and sealing of the electrode-cell interface involves recruitment of surrounding focal adhesion complexes and the anchoring of actin bundles, which form a caulking at the electrode base. Intracellular recordings were stable for several days, and monitoring of both basal activity as well as pharmacologically altered electric signals with high signal-to-noise ratios and excellent electrode coupling was performed.

2.
Exp Cell Res ; 372(2): 85-91, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30248328

ABSTRACT

Cell biology considers most animal tissues as assemblies of "individual" cells that rely on different contact-dependent communication mechanisms, including synapses, gap junctions or - a recent awareness - membrane nano- and microtubes. However, by protease-mediated singularization of dense 2D/ 3D cell cultures and tissue explants, we show here that cell collectives stay connected via a continuous meshwork of F-actin-based membrane tubes, resembling tunneling nanotube (TNT)-based networks observed between dispersed cell cultures. Fusion of respective tubes was accompanied by the ingrowth of microtubules and the invasion of mitochondria and lysosomes. Remarkably, in homology to the plasmodesmata-based plant symplast, we found evidence for expanded, membrane-based syncytia in animal tissues by observing dye transfer among the highly interlinked cells. This approach allows for the first time to visualize and quantify membrane continuity-based connections among densely packed cells and to assess their potential physiological and pathological impact closer to the in vivo situation.


Subject(s)
Actin Cytoskeleton/genetics , Cell Communication/genetics , Giant Cells/physiology , Peptide Hydrolases/chemistry , Actin Cytoskeleton/physiology , Actins/genetics , Actins/physiology , Animals , Cell Communication/physiology , Cell Membrane Structures/genetics , Cell Membrane Structures/physiology , Fibroblasts/physiology , Gap Junctions/genetics , Gap Junctions/physiology , Morphogenesis/genetics , Morphogenesis/physiology , Nanotubes/chemistry , Rats , Synapses/genetics , Synapses/physiology
3.
Open Biol ; 6(6)2016 06.
Article in English | MEDLINE | ID: mdl-27278648

ABSTRACT

Tunnelling nanotubes (TNTs) are increasingly recognized as central players in a multitude of cellular mechanisms and diseases. Although their existence and functions in animal organisms are still elusive, emerging evidence suggests that they are involved in developmental processes, tissue regeneration, viral infections or pathogen transfer, stem cell differentiation, immune responses as well as initiation and progression of neurodegenerative disorders and cancer (see Sisakhtnezhad & Khosravi 2015 Eur. J. Cell Biol. 94, 429-443. (doi:10.1016/j.ejcb.2015.06.010)). A broader field of vision, including their striking functional and structural resemblance with nanotube-mediated phenomena found throughout the phylogenetic tree, from plants down to bacteria, points to a universal, conserved and tightly regulated mechanism of cellular assemblies. Based on our initial definition of TNTs as open-ended channels mediating membrane continuity between connected cells (Rustom et al. 2004 Science 303, 1007-1010. (doi:10.1126/science.1093133)), it is suggested that animal tissues represent supercellular assemblies that-besides opening discrete communication pathways-balance diverse stress factors caused by pathological changes or fluctuating physiological and environmental conditions, such as oxidative stress or nutrient shortage. By combining current knowledge about nanotube formation, intercellular transfer and communication phenomena as well as associated molecular pathways, a model evolves, predicting that the linkage between reactive oxygen species, TNT-based supercellularity and the intercellular shuttling of materials will have significant impact on diverse body functions, such as cell survival, redox/metabolic homeostasis and mitochondrial heteroplasmy. It implies that TNTs are intimately linked to the physiological and pathological state of animal cells and represent a central joint element of diverse diseases, such as neurodegenerative disorders, diabetes or cancer.


Subject(s)
Cell Communication , Chronic Disease , Animals , Biological Transport , Humans , Nanoparticles , Oxidation-Reduction , Phylogeny , Signal Transduction
4.
Beilstein J Nanotechnol ; 7: 296-301, 2016.
Article in English | MEDLINE | ID: mdl-26977386

ABSTRACT

The functional fusion of "living" biomaterial (such as cells) with synthetic systems has developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time diagnostics utilizing biomolecular machineries "perfected" during billion years of evolution. To date, hardware-wetware interfaces that sample or modulate bioelectric potentials, such as neuroprostheses or implantable energy harvesters, are mostly based on microelectrodes brought into the closest possible contact with the targeted cells. Recently, the possibility of using electrochemical gradients of the inner ear for technical applications was demonstrated using implanted electrodes, where 1.12 nW of electrical power was harvested from the guinea pig endocochlear potential for up to 5 h (Mercier, P.; Lysaght, A.; Bandyopadhyay, S.; Chandrakasan, A.; Stankovic, K. Nat. Biotech. 2012, 30, 1240-1243). More recent approaches employ nanowires (NWs) able to penetrate the cellular membrane and to record extra- and intracellular electrical signals, in some cases with subcellular resolution (Spira, M.; Hai, A. Nat. Nano. 2013, 8, 83-94). Such techniques include nanoelectric scaffolds containing free-standing silicon NWs (Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Nat Nanotechnol. 2012, 10, 180-184) or NW field-effect transistors (Qing, Q.; Jiang, Z.; Xu, L.; Gao, R.; Mai, L.; Lieber, C. Nat. Nano. 2013, 9, 142-147), vertically aligned gallium phosphide NWs (Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Nano Lett. 2007, 7, 2960-2965) or individually contacted, electrically active carbon nanofibers. The latter of these approaches is capable of recording electrical responses from oxidative events occurring in intercellular regions of neuronal cultures (Zhang, D.; Rand, E.; Marsh, M.; Andrews, R.; Lee, K.; Meyyappan, M.; Koehne, J. Mol. Neurobiol. 2013, 48, 380-385). Employing monocrystalline gold, nanoelectrode interfaces, we have now achieved stable, functional access to the electrochemical machinery of individual Physarum polycephalum slime mold cells. We demonstrate the "symbionic" union, allowing for electrophysiological measurements, functioning as autonomous sensors and capable of producing nanowatts of electric power. This represents a further step towards the future development of groundbreaking, cell-based technologies, such as bionic sensory systems or miniaturized energy sources to power various devices, or even "intelligent implants", constantly refueled by their surrounding nutrients.

5.
Soft Matter ; 11(10): 2029-35, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25626419

ABSTRACT

LNTs are unique 3D structures made only of safe and abundant biomaterials by self-assembly. The current bottleneck for developing applications using LNTs is the lack of an easy technique to pattern them on substrates. We report a method to free-draw single lipid nanotube (LNT) patterns in any shape on surfaces with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) that takes an inverted hexagonal (HII) phase. We used pre-self-assembled LNTs or HII lipid blocks as a lipid reservoir from which new LNTs were pulled by applying a point load with a micromanipulator. The extreme simplicity of our technique originates from the fundamental nature of DOPE lipids that prefer a HII phase, while all the conventional approaches use PC lipids that form a lamellar phase. By adjusting the surface properties with polyelectrolyte multilayers, the created single LNT objects are able to remain adhered to the surface for over a week. Importantly, it could be shown that two vesicles loaded with caged fluorescent molecules were able to fuse well with a LNT, enabling diffusive transport of uncaged fluorescent molecules from one vesicle to the other.


Subject(s)
Nanotubes/chemistry , Phosphatidylethanolamines/chemistry , Polyethyleneimine/chemistry , Polylysine/chemistry , Polymers/chemistry , Sulfonic Acids/chemistry , Surface Properties
6.
Front Physiol ; 5: 412, 2014.
Article in English | MEDLINE | ID: mdl-25386144

ABSTRACT

Peritoneal dialysis (PD) has attained increased relevance as continuous renal replacement therapy over the past years. During this treatment, the peritoneum functions as dialysis membrane to eliminate diffusible waste products from the blood-stream. Success and efficacy of this treatment is dependent on the integrity of the peritoneal membrane. Chronic inflammatory conditions within the peritoneal cavity coincide with elevated levels of proinflammatory cytokines leading to the impairment of tissue integrity. High glucose concentrations and glucose metabolites in PD solutions contribute to structural and functional reorganization processes of the peritoneal membrane during long-term PD. The subsequent loss of ultrafiltration is causal for the treatment failure over time. It was shown that peritoneal mesothelial cells are functionally connected via Nanotubes (NTs) and that a correlation of NT-occurrence and defined pathophysiological conditions exists. Additionally, an important participation of NTs during inflammatory reactions was shown. Here, we will summarize recent developments of NT-related research and provide new insights into NT-mediated cellular interactions under physiological as well as pathophysiological conditions.

7.
Cell Tissue Res ; 357(3): 667-79, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24870978

ABSTRACT

The receptor for advanced glycation end-products (RAGE), a multiligand receptor of the immunoglobulin superfamily, takes part in various inflammatory processes. The role of this receptor in the context of intercellular communication, like nanotube (NT)-mediated interaction, is largely unknown. Here, we use cell cultures of human and murine peritoneal mesothelial cells as well as murine kidneys from wild-type and RAGE knockout mouse models to assess the role of RAGE in NT formation and function. We show that loss of RAGE function results in reduced NT numbers under physiological conditions and demonstrate the involvement of MAP kinase signaling in NT formation. Additionally, we show for the first time the existence of NTs in murine kidney tissue and confirm the correlation of RAGE expression and NT numbers. Under elevated oxidative stress conditions like renal ischemia or peritoneal dialysis, we demonstrate that RAGE absence does not prevent NT formation. Rather, increased NT numbers and attenuated kidney tissue damage could be observed, indicating that, depending on the predominant conditions, RAGE affects NT formation with implications for cellular communication.


Subject(s)
Epithelial Cells/metabolism , Kidney/metabolism , Nanotubes/chemistry , Peritoneal Cavity/cytology , Receptors, Immunologic/metabolism , Animals , Disease Models, Animal , Epithelial Cells/drug effects , Glucose/pharmacology , Humans , Kidney/drug effects , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Osmolar Concentration , Oxidative Stress/drug effects , Receptor for Advanced Glycation End Products , Reperfusion Injury/pathology , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Commun Integr Biol ; 6(1): e22686, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23802041

ABSTRACT

The recent awareness that eukaryotic cells can be linked and communicate via membranous nanotubes (NTs) has extended previous conceptions of cell-to-cell interaction. Apart from mediating functional connectivity between a broad range of cells, facilitating intercellular transmission of electric signals or various cellular components, there is strong evidence for participation of NTs in pathological processes of particular medical interest. In our recent study, we showed for the first time the existence of nanotubular connections between human primary peritoneal mesothelial cells (HPMCs) and provided insights to their actin/filopodia mediated building mechanism. Furthermore, we showed that tumor necrosis factor (TNF) significantly increased NT formation between HPMCs, pointing to a crucial role of NTs during inflammatory processes. Moreover, our study showed a strong correlation of NT occurrence and cellular cholesterol contents, demonstrating an interdependence of NT mediated cell communication, cytokine action and cholesterol homeostasis. Here, we further provide analysis on NT-formation processes.

9.
Mech Dev ; 130(6-8): 381-7, 2013.
Article in English | MEDLINE | ID: mdl-23246917

ABSTRACT

The development of multi-cellular organisms involves a comprehensive and tightly regulated cell-to-cell communication system to coordinate the activity and behavior of individual cells. Diverse signaling pathways ranging from receptor-mediated signal transduction to contact-dependent communication via gap junctions achieve these complex interactions. In this review, we will focus on a new type of intercellular connection, the tunneling nanotube (TNT), which has been observed in many cell types in vitro and recently also in developing embryos of different species in vivo. We will summarize the latest insights into their functional roles in cell-to-cell signaling with a particular focus on the TNT-dependent electrical coupling between developing embryonic cells. Finally, potential implications of these new findings in the light of developmental processes, particularly in cell migration, will be discussed.


Subject(s)
Adherens Junctions/physiology , Cell Communication/physiology , Electrical Synapses/physiology , Eukaryotic Cells/physiology , Sea Urchins/embryology , Zebrafish/embryology , Adherens Junctions/ultrastructure , Animals , Biological Transport , Cell Movement , Chick Embryo , Electrical Synapses/ultrastructure , Embryo, Mammalian , Embryo, Nonmammalian , Eukaryotic Cells/ultrastructure , Mice , Sea Urchins/cytology , Signal Transduction
10.
Small ; 8(22): 3396-9, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-22887607

ABSTRACT

Cross-sections of cylindrically shaped nanowires are fabricated using a focused ion beam technique. They are oriented such that the electron beam direction is parallel to a low-index zone axis for high- resolution imaging. In this configuration the direction of gold nanowire growth can be determined using electron diffraction.

11.
Int J Cell Biol ; 2012: 805295, 2012.
Article in English | MEDLINE | ID: mdl-22719766

ABSTRACT

The biogenesis, maturation, and exocytosis of secretory granules in interphase cells have been well documented, whereas the distribution and exocytosis of these hormone-storing organelles during cell division have received little attention. By combining ultrastructural analyses and time-lapse microscopy, we here show that, in dividing PC12 cells, the prominent peripheral localization of secretory granules is retained during prophase but clearly reduced during prometaphase, ending up with only few peripherally localized secretory granules in metaphase cells. During anaphase and telophase, secretory granules exhibited a pronounced movement towards the cell midzone and, evidently, their tracks colocalized with spindle microtubules. During cytokinesis, secretory granules were excluded from the midbody and accumulated at the bases of the intercellular bridge. Furthermore, by measuring exocytosis at the single granule level, we showed, that during all stages of cell division, secretory granules were competent for regulated exocytosis. In conclusion, our data shed new light on the complex molecular machinery of secretory granule redistribution during cell division, which facilitates their release from the F-actin-rich cortex and active transport along spindle microtubules.

12.
Biointerphases ; 6(1): 22-31, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21428692

ABSTRACT

Recently, numerous innovative approaches have attempted to overcome the shortcomings of standard tissue culturing by providing custom-tailored substrates with superior features. In particular, tunable surface chemistry and topographical micro- and nanostructuring have been highlighted as potent effectors to control cell behavior. Apart from tissue engineering and the development of biosensors and diagnostic assays, the need for custom-tailored platform systems is accentuated by a variety of complex and poorly characterized biological processes. One of these processes is cell-to-cell communication mediated by tunneling nanotubes (TNTs), the reliable statistical analysis of which is consistently hampered by critical dependencies on various experimental factors, such as cell singularization, spacing, and alignment. Here, the authors developed a microstructured platform based on a combination of controlled surface chemistry along with topographic parameters, which permits the controllable attachment of different cell types to complementary patterns of cell attracting/nonattracting surface domains and-as a consequence-represents a standardized analysis tool to approach a wide range of biological questions. Apart from the technical complementation of mainstream applications, the developed surfaces could successfully be used to statistically determine TNT-based intercellular connection processes as they are occurring in standard as well as primary cell cultures.


Subject(s)
Cell Adhesion , Cell Communication , Nanotubes/chemistry , Animals , Cell Culture Techniques , Cell Line, Tumor , Rats , Surface Properties
13.
PLoS One ; 6(12): e29537, 2011.
Article in English | MEDLINE | ID: mdl-22216308

ABSTRACT

A well-known role of human peritoneal mesothelial cells (HPMCs), the resident cells of the peritoneal cavity, is the generation of an immune response during peritonitis by activation of T-cells via antigen presentation. Recent findings have shown that intercellular nanotubes (NTs) mediate functional connectivity between various cell types including immune cells - such as T-cells, natural killer (NK) cells or macrophages - by facilitating a spectrum of long range cell-cell interactions. Although of medical interest, the relevance of NT-related findings for human medical conditions and treatment, e.g. in relation to inflammatory processes, remains elusive, particularly due to a lack of appropriate in vivo data. Here, we show for the first time that primary cultures of patient derived HPMCs are functionally connected via membranous nanotubes. NT formation appears to be actin cytoskeleton dependent, mediated by the action of filopodia. Importantly, significant variances in NT numbers between different donors as a consequence of pathophysiological alterations were observable. Furthermore, we show that TNF-α induces nanotube formation and demonstrate a strong correlation of NT connectivity in accordance with the cellular cholesterol level and distribution, pointing to a complex involvement of NTs in inflammatory processes with potential impact for clinical treatment.


Subject(s)
Epithelium , Inflammation/pathology , Nanotubes , Peritoneal Cavity/pathology , Humans , Inflammation/immunology , Lymphocyte Activation , Microinjections , Microscopy, Electron, Scanning , Microscopy, Fluorescence , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/physiology
14.
Ann N Y Acad Sci ; 1178: 129-36, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19845633

ABSTRACT

Precise coordination of various cell types and tissues represents a substantial prerequisite for the development and maintenance of multicellular organisms. Therefore, eukaryotic cells have developed a variety of complex structures, including synapses or gap junctions. Recently, thin membranous channels, termed "tunnelling nanotubes," were discovered. Tunnelling nanotubes interconnect miscellaneous animal cells and are assumed to be involved in important physiological and pathological mechanisms, such as the intercellular spread of diverse pathogens. This phenomenon shows striking similarities to plant tissues, where cells are connected via membranous channels, called plasmodesmata. Emerging evidence suggests that the discovery of tunnelling nanotubes may enforce reconsideration of previous conceptions of intercellular communication, additionally providing novel perspectives concerning early evolution of multicellular life-forms.


Subject(s)
Cell Communication/physiology , Ion Channels/metabolism , Gap Junctions/metabolism , Models, Genetic , Plasmodesmata/physiology , Signal Transduction , Synapses/metabolism
15.
Cytometry A ; 69(9): 961-72, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16969816

ABSTRACT

BACKGROUND: This paper presents an automated method for the identification of thin membrane tubes in 3D fluorescence images. These tubes, referred to as tunneling nanotubes (TNTs), are newly discovered intercellular structures that connect living cells through a membrane continuity. TNTs are 50-200 nm in diameter, crossing from one cell to another at their nearest distance. In microscopic images, they are seen as straight lines. It now emerges that the TNTs represent the underlying structure of a new type of cell-to-cell communication. METHODS: Our approach for the identification of TNTs is based on a combination of biological cell markers and known image processing techniques. Watershed segmentation and edge detectors are used to find cell borders, TNTs, and image artifacts. Mathematical morphology is employed at several stages of the processing chain. Two image channels are used for the calculations to improve classification of watershed regions into cells and background. One image channel displays cell borders and TNTs, the second is used for cell classification and displays the cytoplasmic compartments of the cells. The method for cell segmentation is 3D, and the TNT detection incorporates 3D information using various 2D projections. RESULTS: The TNT- and cell-detection were applied to numerous 3D stacks of images. A success rate of 67% was obtained compared with manual identification of the TNTs. The digitalized results were used to achieve statistical information of selected properties of TNTs. CONCLUSION: To further explore these structures, automated detection and quantification is desirable. Consequently, this automated recognition tool will be useful in biological studies on cell-to-cell communication where TNT quantification is essential.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Nanotubes , Algorithms , Animals , Cell Communication , Models, Biological , Nanotubes/analysis , Nanotubes/ultrastructure , PC12 Cells/ultrastructure , Rats
16.
Genomics ; 87(2): 243-53, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16406728

ABSTRACT

Centrosomes are the major microtubule nucleating center in the cell; they also contribute to spindle pole organization and play a role in cell cycle progression as well as completing cytokinesis. Here we describe the molecular characterization of a novel human gene, CEP55, located in 10q23.33 that is expressed in multiple tissues and various cancer cell lines. Sequence analysis of the cDNA predicted a protein of 464 amino acids with several putative coiled-coil domains that are responsible for protein-protein interactions. Indeed, we found homodimerization of CEP55 by coimmunoprecipitation. Subcellular localization analysis revealed that endogenous CEP55 as well as an EGFP-CEP55 fusion protein is present at the centrosome throughout mitosis, whereas it also appears at the cleavage furrow in late anaphase and in the midbody in cytokinesis. Neither nocodazole nor taxol interfered with centrosome association of endogenous CEP55, suggesting that it directly interacts with centrosome components rather than with microtubules. In microtubule regrowth assays, overexpression of CEP55 did not enhance or inhibit microtubule nucleation. Together, these data suggest a possible involvement of CEP55 in centrosome-dependent cellular functions, such as centrosome duplication and/or cell cycle progression, or in the regulation of cytokinesis.


Subject(s)
Cell Cycle Proteins/metabolism , Nuclear Proteins/metabolism , Spindle Apparatus/metabolism , Base Sequence , Blotting, Northern , Chromosomes, Human, Pair 10 , Chromosomes, Human, X , DNA Primers , DNA, Complementary , Green Fluorescent Proteins/genetics , Humans , Immunoprecipitation , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Translocation, Genetic
17.
Science ; 303(5660): 1007-10, 2004 Feb 13.
Article in English | MEDLINE | ID: mdl-14963329

ABSTRACT

Cell-to-cell communication is a crucial prerequisite for the development and maintenance of multicellular organisms. To date, diverse mechanisms of intercellular exchange of information have been documented, including chemical synapses, gap junctions, and plasmodesmata. Here, we describe highly sensitive nanotubular structures formed de novo between cells that create complex networks. These structures facilitate the selective transfer of membrane vesicles and organelles but seem to impede the flow of small molecules. Accordingly, we propose a novel biological principle of cell-to-cell interaction based on membrane continuity and intercellular transfer of organelles.


Subject(s)
Cell Communication , Cell Surface Extensions/metabolism , Cell Surface Extensions/ultrastructure , Organelles/metabolism , Actins/metabolism , Animals , Biological Transport , Carbocyanines/metabolism , Cell Line , Cell Membrane/metabolism , Endocytosis , Endosomes/metabolism , Fluorescent Dyes/metabolism , Green Fluorescent Proteins , Luminescent Proteins/metabolism , Membrane Proteins/metabolism , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Microscopy, Video , PC12 Cells , Protein Prenylation , Protein Transport , Pseudopodia/metabolism , Pseudopodia/ultrastructure , Rats , Recombinant Fusion Proteins/metabolism , Synaptophysin/metabolism
18.
Biol Chem ; 384(1): 175-82, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12674512

ABSTRACT

Hyaluronan is the sole glycosaminoglycan whose biosynthesis takes place directly at the plasma membrane. The mechanism by which hyaluronan synthase (HAS) becomes inserted there, as well as the question of how the enzyme discriminates between particular membrane species in polarized cells, are largely unknown. In vitro translation of HAS suggested that the nascent protein becomes stabilized in the presence of microsomal membranes, but would not insert spontaneously into membranes after being translated in the absence of those. We therefore monitored the membrane attachment of enzymatically active fusion proteins consisting of Xenopus HAS1 and green fluorescent protein shortly after de novo synthesis in Vero cells. Our data strongly suggest that HAS proteins are directly translated on the ER membrane without exhibiting an N-terminal signal sequence. From there the inactive protein is transferred to the plasma membrane via the secretory pathway. For unknown reasons, HAS inserted into membranes other than the plasma membrane remains inactive.


Subject(s)
Glucuronosyltransferase/metabolism , Glycosyltransferases , Membrane Proteins , Transferases , Xenopus Proteins , Animals , Biological Transport, Active/physiology , Cadherins/metabolism , Cell Membrane/enzymology , DNA, Complementary/biosynthesis , Fluorescent Dyes/chemistry , Glucuronosyltransferase/biosynthesis , Glucuronosyltransferase/genetics , Golgi Apparatus/metabolism , Hyaluronan Synthases , Hyaluronic Acid/biosynthesis , Immunochemistry , LLC-PK1 Cells , Methionine/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Microsomes/enzymology , Plasmids/genetics , Protein Biosynthesis , Swine , Xenopus
19.
Traffic ; 3(4): 279-88, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11929609

ABSTRACT

In epithelial cells, soluble cargo proteins destined for basolateral or apical secretion are packaged into distinct trans-Golgi network-derived transport carriers. Similar carriers, termed basolateral- and apical-like, have been observed in nonepithelial cells using ectopically expressed membrane marker proteins. Whether these cells are capable of selectively packaging secretory proteins into distinct carriers is still an open question. Here, we have addressed this issue by analyzing the packaging and transport of secretory human chromogranin B fusion proteins using a green fluorescent protein-based high-resolution, dual-color imaging technique. We were able to show that these secretory markers were selectively packaged at the Golgi into tubular/vesicular-like transport carriers containing basolateral membrane markers, resulting in extensive cotransport. In contrast, deletion mutants of the human chromogranin B fusion proteins lacking an N-terminal loop structure were efficiently transported in both basolateral- and apical-like carriers, the latter displaying a spherical morphology. Similarly, in polarized epithelial cells, the human chromogranin B fusion protein was secreted basolaterally and the loop-deleted analogue into both the basolateral and apical medium. These findings suggest that nonepithelial cells, like their epithelial counterparts, possess a sorting machinery capable of selective packaging of secretory cargo into distinct types of carriers.


Subject(s)
Chromogranins/metabolism , Drug Delivery Systems , Golgi Apparatus/metabolism , Animals , Bacterial Proteins/metabolism , Biological Transport , Cell Line , Chlorocebus aethiops , Dogs , Electroporation , Epithelial Cells/metabolism , Gene Deletion , Green Fluorescent Proteins , Humans , Immunohistochemistry , Luminescent Proteins/metabolism , Microscopy, Electron , Microscopy, Fluorescence , Mutation , Plasmids/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/metabolism , Transfection , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...