Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 41(12): 1869-1882, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30269218

ABSTRACT

Biological reduction of sulphate at low hydraulic retention time (HRT) is presented in this paper. A sulphidogenic inverse fluidized-bed bioreactor (IFBB) was operated successfully at a progressively decreasing HRT from 1 to 0.125 days for a total of 155 days. Synthetic wastewater containing sulphate at a concentration of 745 (± 17) mg/L was used. COD was supplied as lactate in variable concentrations at COD/SO42- ratios of 1.2-2.4. The pH of the feed ranged between 5.2 and 6.2. The highest measured removal rates were 2646 and 4866 mg SO42-/L day at an HRT of 0.25 and 0.125 days, respectively, using a COD/SO42- ratio of 2.3. The biological sulphate reduction was limited by the influent COD concentrations at a COD/SO42- ratio < 2.3. The IFBB ensured biomass retention at a maximum liquid residence time of θ = 3.84 (± 0.013), according to the residence time distribution analysis. Hydrodynamic studies were carried out at recirculation rates of 0, 200, 300, 350, 400, and 500 L/h to measure the relative bed expansion, the mixing pattern, and the fluidization characteristics of the reactor. A dynamic model is also developed based on COD and sulphate as the two limiting substrates in a Monod-type kinetic equation describing the kinetics of lactate oxidation by SRB. A set of the following parameters [Formula: see text] = 0.23 mg COD of VSS/mg lactate, µmax = 1.758 day- 1, KCOD = 956 mg COD of lactate/L, [Formula: see text] = 316 mg SO42-/L, kd = 0.024 day- 1, tres = 5.7 days, and kexchange = 0.4 day- 1 simulated adequately the residual effluent COD and sulphate concentrations, the produced sulphide concentration as well as the pH of the IFBB effluent. Low HRT values, shown efficient in this study, are prerequisite for industrial applicability and economic feasibility of the sulphur reduction process. In addition, the developed model can be used for optimum experimental design and further process upscale and development.


Subject(s)
Bioreactors , Hydrodynamics , Models, Biological , Sulfates/metabolism , Wastewater/microbiology , Oxidation-Reduction
2.
Environ Sci Pollut Res Int ; 25(6): 5115-5128, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28702909

ABSTRACT

Industrial wastewaters containing high concentrations of sulphate, such as those generated by mining, metallurgical and mineral processing industries, require electron donor for biological sulfidogenesis. In this study, five types of lignocellulosic biowastes were characterized as potential low-cost slow release electron donors for application in a continuously operated sulphidogenic inverse fluidized bed bioreactor (IFBB). Among them, natural scourer and cork were selected due to their high composition of volatile solids (VS), viz. 89.1 and 96.3%, respectively. Experiments were performed in batch (47 days) and in an IFBB (49 days) using synthetic sulphate-rich wastewater. In batch, the scourer gave higher sulphate reduction rates (67.7 mg SO42- L-1 day-1) in comparison to cork (12.1 mg SO42- L-1 day-1), achieving >82% sulphate reduction efficiencies. In the IFBB packed with the natural scourer, the average sulphate reduction efficiency was 24 (±17)%, while the volumetric sulphate reduction rate was 167 (±117) mg SO42- L-1 day-1. The long incubation time in the batch experiments (47 days) allowed higher sulphate reduction efficiencies in comparison to the short hydraulic retention time (24 h) in the IFBB. This suggests the hydrolysis-fermentation was the rate-limiting step and the electron donor supply (through hydrolysis of the lignocellulosic biowaste) was limiting the sulphate reduction. Lignocellulose as carrier material and slow release electron donor for sulphidogenesis.


Subject(s)
Industrial Waste/analysis , Lignin/analysis , Sulfates/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Biological Oxygen Demand Analysis , Bioreactors , Oxidation-Reduction
3.
J Environ Manage ; 200: 407-415, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28605729

ABSTRACT

Many industrial sulphate rich wastewaters are deficient in electron donors to achieve complete sulphate removal. Therefore, pure and expensive chemicals are supplied externally. In this study, carbohydrate based polymers (CBP) as potato (2 and 5 mm3), filter paper (2 and 5 mm2) and crab shell (2 and 4 mm Ø) were tested as slow release electron donors (SRED) for biological sulphate reduction at 30 °C and initial pH of 7.0. Using the CBP as SRED, sulphate reduction was carried out at different rates: filter paper 0.065-0.050 > potato 0.022-0.034 > crab shell 0.006-0.009 mg SO42-.mg VSS-1d-1. These were also affected by the hydrolysis-fermentation rates: potato 0.087-0.070 > filter paper 0.039-0.047 > crab shell 0.011-0.028 mg CODS.mg VSS-1d-1, respectively. Additionally, the sulphate removal efficiencies using filter paper (cellulose, > 98%), potato (starch, > 82%) and crab shell (chitin, > 32%) were achieved only when using CBP as SRED and in the absence of other easily available electron donors. This study showed that the natural characteristics of the CBP limited the hydrolysis-fermentation step and, therefore, the sulphate reduction rates.


Subject(s)
Carbohydrates , Sulfates , Water Purification , Electrons , Filtration , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...