Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 770
Filter
1.
Hastings Cent Rep ; 54(3): 15-27, 2024 May.
Article in English | MEDLINE | ID: mdl-38842894

ABSTRACT

Since the U.S. Supreme Court's decision in Dobbs vs. Jackson Women's Health Organization, a growing web of state laws restricts access to abortion. Here we consider how, ethically, doctors should respond when terminating a pregnancy is clinically indicated but state law imposes restrictions on doing so. We offer a typology of cases in which the dilemma emerges and a brief sketch of the current state of legal prohibitions against providing such care. We examine the issue from the standpoints of conscience, professional ethics, and civil disobedience and conclude that it is almost always morally permissible and praiseworthy to break the law and that, in a subset of cases, it is morally obligatory to do so. We further argue that health care institutions that employ or credential physicians to provide reproductive health care have an ethical duty to provide a basic suite of practical supports for them as they work to ethically resolve the dilemmas before them.


Subject(s)
Moral Obligations , Physicians , Humans , Physicians/ethics , United States , Pregnancy , Female , Abortion, Induced/ethics , Abortion, Induced/legislation & jurisprudence , Supreme Court Decisions
2.
Nat Commun ; 15(1): 5095, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876987

ABSTRACT

Two-photon voltage imaging has long been heralded as a transformative approach capable of answering many long-standing questions in modern neuroscience. However, exploiting its full potential requires the development of novel imaging approaches well suited to the photophysical properties of genetically encoded voltage indicators. We demonstrate that parallel excitation approaches developed for scanless two-photon photostimulation enable high-SNR two-photon voltage imaging. We use whole-cell patch-clamp electrophysiology to perform a thorough characterization of scanless two-photon voltage imaging using three parallel illumination approaches and lasers with different repetition rates and wavelengths. We demonstrate voltage recordings of high-frequency spike trains and sub-threshold depolarizations from neurons expressing the soma-targeted genetically encoded voltage indicator JEDI-2P-Kv. Using a low repetition-rate laser, we perform multi-cell recordings from up to fifteen targets simultaneously. We co-express JEDI-2P-Kv and the channelrhodopsin ChroME-ST and capitalize on their overlapping two-photon absorption spectra to simultaneously evoke and image action potentials using a single laser source. We also demonstrate in vivo scanless two-photon imaging of multiple cells simultaneously up to 250 µm deep in the barrel cortex of head-fixed, anaesthetised mice.


Subject(s)
Action Potentials , Neurons , Photons , Animals , Mice , Neurons/physiology , Action Potentials/physiology , Patch-Clamp Techniques , Lasers
3.
J Med Chem ; 67(11): 9731-9744, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38807539

ABSTRACT

Recent literature reports highlight the importance of the renal outer medullary potassium (ROMK) channel in renal sodium and potassium homeostasis and emphasize the potential impact that ROMK inhibitors could have as a novel mechanism diuretic in heart failure patients. A series of piperazine-based ROMK inhibitors were designed and optimized to achieve excellent ROMK potency, hERG selectivity, and ADME properties, which led to the identification of compound 28 (BMS-986308). BMS-986308 demonstrated efficacy in the volume-loaded rat diuresis model as well as promising in vitro and in vivo profiles and was therefore advanced to clinical development.


Subject(s)
Heart Failure , Potassium Channel Blockers , Animals , Heart Failure/drug therapy , Humans , Rats , Potassium Channel Blockers/therapeutic use , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacokinetics , Potassium Channel Blockers/chemical synthesis , Structure-Activity Relationship , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Drug Discovery , Diuresis/drug effects , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/therapeutic use , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Male , Rats, Sprague-Dawley
4.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690733

ABSTRACT

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Male , Longitudinal Studies , SARS-CoV-2/immunology , Female , Middle Aged , Aged , Adult , Cytokines/blood , Cytokines/immunology , Multiomics
5.
Sci Total Environ ; 930: 172777, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38670384

ABSTRACT

Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10-53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca2+, Mg2+, Na+, and K+) and correlated elements (e.g. Sr2+, N, Cu) formed 'salty chemical cocktails' that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.

6.
ACS Med Chem Lett ; 15(4): 424-431, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38628790

ABSTRACT

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.

7.
Sci Transl Med ; 16(743): eadj5154, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630846

ABSTRACT

Age is a major risk factor for severe coronavirus disease 2019 (COVID-19), yet the mechanisms behind this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host immune response in the blood and the upper airway, as well as the nasal microbiome in a prospective, multicenter cohort of 1031 vaccine-naïve patients hospitalized for COVID-19 between 18 and 96 years old. We performed mass cytometry, serum protein profiling, anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays, and blood and nasal transcriptomics. We found that older age correlated with increased SARS-CoV-2 viral abundance upon hospital admission, delayed viral clearance, and increased type I interferon gene expression in both the blood and upper airway. We also observed age-dependent up-regulation of innate immune signaling pathways and down-regulation of adaptive immune signaling pathways. Older adults had lower naïve T and B cell populations and higher monocyte populations. Over time, older adults demonstrated a sustained induction of pro-inflammatory genes and serum chemokines compared with younger individuals, suggesting an age-dependent impairment in inflammation resolution. Transcriptional and protein biomarkers of disease severity differed with age, with the oldest adults exhibiting greater expression of pro-inflammatory genes and proteins in severe disease. Together, our study finds that aging is associated with impaired viral clearance, dysregulated immune signaling, and persistent and potentially pathologic activation of pro-inflammatory genes and proteins.


Subject(s)
COVID-19 , Humans , Aged , Adolescent , Young Adult , Adult , Middle Aged , Aged, 80 and over , SARS-CoV-2 , Prospective Studies , Multiomics , Chemokines
8.
J Med Chem ; 67(6): 4251-4258, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38456628

ABSTRACT

As we celebrate International Women's Day 2024 with the theme "Inspire Inclusion", the women of the ACS Medicinal Chemistry Division (MEDI) want to foster a sense of belonging, relevance, and empowerment by sharing uplifting stories of what inspired them to become medicinal chemists. In this editorial, we are featuring female medicinal chemistry scientists to provide role models, encouragement, and inspiration to others. We asked women medicinal chemists to contribute a brief paragraph about what inspired them to become medicinal chemists or what inspires them today as medicinal chemists. The responses and contributions highlight their passions and motivations, such as their love of the sciences and their drive to improve human health by contributing to basic research and creating lifesaving drugs.


Subject(s)
Chemistry, Pharmaceutical , Power, Psychological , Humans , Female
9.
Article in English | MEDLINE | ID: mdl-38548324

ABSTRACT

BACKGROUND: Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS: In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS: Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION: These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.

10.
Nat Commun ; 15(1): 1940, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431671

ABSTRACT

Volumetric super-resolution microscopy typically encodes the 3D position of single-molecule fluorescence into a 2D image by changing the shape of the point spread function (PSF) as a function of depth. However, the resulting large and complex PSF spatial footprints reduce biological throughput and applicability by requiring lower labeling densities to avoid overlapping fluorescent signals. We quantitatively compare the density dependence of single-molecule light field microscopy (SMLFM) to other 3D PSFs (astigmatism, double helix and tetrapod) showing that SMLFM enables an order-of-magnitude speed improvement compared to the double helix PSF by resolving overlapping emitters through parallax. We demonstrate this optical robustness experimentally with high accuracy ( > 99.2 ± 0.1%, 0.1 locs µm-2) and sensitivity ( > 86.6 ± 0.9%, 0.1 locs µm-2) through whole-cell (scan-free) imaging and tracking of single membrane proteins in live primary B cells. We also exemplify high-density volumetric imaging (0.15 locs µm-2) in dense cytosolic tubulin datasets.


Subject(s)
Imaging, Three-Dimensional , Microscopy , Microscopy/methods , Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Nanotechnology
11.
Article in English | MEDLINE | ID: mdl-38485057

ABSTRACT

BACKGROUND: MUPPITS-2 was a randomized, placebo-controlled clinical trial that demonstrated mepolizumab (anti-IL-5) reduced exacerbations and blood and airway eosinophils in urban children with severe eosinophilic asthma. Despite this reduction in eosinophilia, exacerbation risk persisted in certain patients treated with mepolizumab. This raises the possibility that subpopulations of airway eosinophils exist that contribute to breakthrough exacerbations. OBJECTIVE: We aimed to determine the effect of mepolizumab on airway eosinophils in childhood asthma. METHODS: Sputum samples were obtained from 53 MUPPITS-2 participants. Airway eosinophils were characterized using mass cytometry and grouped into subpopulations using unsupervised clustering analyses of 38 surface and intracellular markers. Differences in frequency and immunophenotype of sputum eosinophil subpopulations were assessed based on treatment arm and frequency of exacerbations. RESULTS: Median sputum eosinophils were significantly lower among participants treated with mepolizumab compared with placebo (58% lower, 0.35% difference [95% CI 0.01, 0.74], P = .04). Clustering analysis identified 3 subpopulations of sputum eosinophils with varied expression of CD62L. CD62Lint and CD62Lhi eosinophils exhibited significantly elevated activation marker and eosinophil peroxidase expression, respectively. In mepolizumab-treated participants, CD62Lint and CD62Lhi eosinophils were more abundant in participants who experienced exacerbations than in those who did not (100% higher for CD62Lint, 0.04% difference [95% CI 0.0, 0.13], P = .04; 93% higher for CD62Lhi, 0.21% difference [95% CI 0.0, 0.77], P = .04). CONCLUSIONS: Children with eosinophilic asthma treated with mepolizumab had significantly lower sputum eosinophils. However, CD62Lint and CD62Lhi eosinophils were significantly elevated in children on mepolizumab who had exacerbations, suggesting that eosinophil subpopulations exist that contribute to exacerbations despite anti-IL-5 treatment.

13.
Front Public Health ; 12: 1303953, 2024.
Article in English | MEDLINE | ID: mdl-38450127

ABSTRACT

Background: Systematic review evidence suggests preconception health interventions may be effective in improving a range of outcomes. However, few studies have explored women's views on potential content and delivery methods for these interventions. Methods: Participants were purposively sampled from respondents (n = 313) of a survey. Semi-structured, in-depth interviews were conducted to explore their views on seven candidate delivery methods for preconception health interventions: general practitioners (GPs), nurse practitioners, pharmacists, social media, personal texts and emails, pregnancy tests, and health education in schools. Data were analyzed using a data-driven framework analysis. Results: Twenty women were interviewed. Women wanted interventions to be easily accessible but allow them to conceal their pregnancy plans. They preferred to choose to receive preconception interventions but were receptive to health professionals raising preconception health during 'relevant' appointments such as contraceptive counseling and cervical smear tests. They wanted intervention content to provide trustworthy and positively framed information that highlights the benefits of good preconception health and avoids stigmatizing women for their weight and preconception actions. The inclusion of support for preconception mental health and the use of visual media, personalization, simple information, and interesting and unfamiliar facts were viewed favorably. Conclusion: Interventions to improve preconception health should reflect the sensitivities of pregnancy intentions, be easy to access in a way that enables discretion, and be designed to seek consent to receive the intervention. These interventions should ideally be tailored to their target populations and provide trustworthy information from reputable sources. The potential for unintended harmful effects should be explored.


Subject(s)
Preconception Care , Female , Humans , Pregnancy , Health Education , Intention , Mental Health
14.
J Med Chem ; 67(5): 3571-3589, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38385264

ABSTRACT

PAR4 is a promising antithrombotic target with potential for separation of efficacy from bleeding risk relative to current antiplatelet therapies. In an effort to discover a novel PAR4 antagonist chemotype, a quinoxaline-based HTS hit 3 with low µM potency was identified. Optimization of the HTS hit through the use of positional SAR scanning and the design of conformationally constrained cores led to the discovery of a quinoxaline-benzothiazole series as potent and selective PAR4 antagonists. The lead compound 48, possessing a 2 nM IC50 against PAR4 activation by γ-thrombin in platelet-rich plasma (PRP) and greater than 2500-fold selectivity versus PAR1, demonstrated robust antithrombotic efficacy and minimal bleeding in the cynomolgus monkey models.


Subject(s)
Fibrinolytic Agents , Thrombosis , Animals , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Macaca fascicularis , Quinoxalines/pharmacology , Quinoxalines/therapeutic use , Receptors, Thrombin , Thrombin , Hemorrhage , Thrombosis/drug therapy , Thrombosis/prevention & control , Receptor, PAR-1 , Blood Platelets , Platelet Aggregation
15.
J Autoimmun ; 144: 103175, 2024 04.
Article in English | MEDLINE | ID: mdl-38387105

ABSTRACT

SARS-CoV-2-specific CD8+ T cells recognize conserved viral peptides and in the absence of cross-reactive antibodies form an important line of protection against emerging viral variants as they ameliorate disease severity. SARS-CoV-2 mRNA vaccines induce robust spike-specific antibody and T cell responses in healthy individuals, but their effectiveness in patients with chronic immune-mediated inflammatory disorders (IMIDs) is less well defined. These patients are often treated with systemic immunosuppressants, which may negatively affect vaccine-induced immunity. Indeed, TNF inhibitor (TNFi)-treated inflammatory bowel disease (IBD) patients display reduced ability to maintain SARS-CoV-2 antibody responses post-vaccination, yet the effects on CD8+ T cells remain unclear. Here, we analyzed the impact of IBD and TNFi treatment on mRNA-1273 vaccine-induced CD8+ T cell responses compared to healthy controls in SARS-CoV-2 experienced and inexperienced patients. CD8+ T cells were analyzed for their ability to recognize 32 SARS-CoV-2-specific epitopes, restricted by 10 common HLA class I allotypes using heterotetramer combinatorial coding. This strategy allowed in-depth ex vivo profiling of the vaccine-induced CD8+ T cell responses using phenotypic and activation markers. mRNA vaccination of TNFi-treated and untreated IBD patients induced robust spike-specific CD8+ T cell responses with a predominant central memory and activated phenotype, comparable to those in healthy controls. Prominent non-spike-specific CD8+ T cell responses were observed in SARS-CoV-2 experienced donors prior to vaccination. Non-spike-specific CD8+ T cells persisted and spike-specific CD8+ T cells notably expanded after vaccination in these patient cohorts. Our data demonstrate that regardless of TNFi treatment or prior SARS-CoV-2 infection, IBD patients benefit from vaccination by inducing a robust spike-specific CD8+ T cell response.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases , Humans , CD8-Positive T-Lymphocytes , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Tumor Necrosis Factor Inhibitors , Vaccination , Antibodies , Inflammatory Bowel Diseases/drug therapy , Antibodies, Viral
16.
medRxiv ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38405760

ABSTRACT

Age is a major risk factor for severe coronavirus disease-2019 (COVID-19), yet the mechanisms responsible for this relationship have remained incompletely understood. To address this, we evaluated the impact of aging on host and viral dynamics in a prospective, multicenter cohort of 1,031 patients hospitalized for COVID-19, ranging from 18 to 96 years of age. We performed blood transcriptomics and nasal metatranscriptomics, and measured peripheral blood immune cell populations, inflammatory protein expression, anti-SARS-CoV-2 antibodies, and anti-interferon (IFN) autoantibodies. We found that older age correlated with an increased SARS-CoV-2 viral load at the time of admission, and with delayed viral clearance over 28 days. This contributed to an age-dependent increase in type I IFN gene expression in both the respiratory tract and blood. We also observed age-dependent transcriptional increases in peripheral blood IFN-γ, neutrophil degranulation, and Toll like receptor (TLR) signaling pathways, and decreases in T cell receptor (TCR) and B cell receptor signaling pathways. Over time, older adults exhibited a remarkably sustained induction of proinflammatory genes (e.g., CXCL6) and serum chemokines (e.g., CXCL9) compared to younger individuals, highlighting a striking age-dependent impairment in inflammation resolution. Augmented inflammatory signaling also involved the upper airway, where aging was associated with upregulation of TLR, IL17, type I IFN and IL1 pathways, and downregulation TCR and PD-1 signaling pathways. Metatranscriptomics revealed that the oldest adults exhibited disproportionate reactivation of herpes simplex virus and cytomegalovirus in the upper airway following hospitalization. Mass cytometry demonstrated that aging correlated with reduced naïve T and B cell populations, and increased monocytes and exhausted natural killer cells. Transcriptional and protein biomarkers of disease severity markedly differed with age, with the oldest adults exhibiting greater expression of TLR and inflammasome signaling genes, as well as proinflammatory proteins (e.g., IL6, CXCL8), in severe COVID-19 compared to mild/moderate disease. Anti-IFN autoantibody prevalence correlated with both age and disease severity. Taken together, this work profiles both host and microbe in the blood and airway to provide fresh insights into aging-related immune changes in a large cohort of vaccine-naïve COVID-19 patients. We observed age-dependent immune dysregulation at the transcriptional, protein and cellular levels, manifesting in an imbalance of inflammatory responses over the course of hospitalization, and suggesting potential new therapeutic targets.

17.
J Immunol Methods ; 528: 113651, 2024 May.
Article in English | MEDLINE | ID: mdl-38417671

ABSTRACT

Premature lymphocytes develop into non-autoreactive, mature naïve CD4+ or CD8+ T cells in the thymus before entering the circulation. However, in-depth characterization of human thymocyte development remains challenging due to limited availability of human thymus samples and the fragile nature of thymocyte populations. Thymocytes often do not survive cryopreservation and thawing procedures, especially the fragile CD4+CD8+ double positive population. It is generally recommended to use fresh human thymus tissue on the day of excision to avoid any biases in thymocyte composition. This hampers the possibility to perform multiple experiments on the same thymus sample. To establish how the thymocyte viability and composition can be maintained, we compared two thymocyte isolation methods used for human and/or mice thymi, three cryopreservation methods in combination with our most gentle thawing technique. Based on our findings we established that fresh human thymi remain viable in cold storage for up to two days post-surgery without compromising thymocyte composition. Thymocytes can be cryopreserved if required, although the CD4+CD8+ double positive populations may be reduced. Our study provides thoroughly optimized methods to study human thymocyte development over a considerable time-frame post-surgery.


Subject(s)
CD8-Positive T-Lymphocytes , Thymocytes , Mice , Animals , Humans , Thymus Gland , Cell Differentiation
18.
BMC Public Health ; 24(1): 95, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38183020

ABSTRACT

BACKGROUND: Some modifiable risk factors for cancer originate during adolescence. While there is evidence indicating relationships between adverse childhood experiences and health risk behaviours generally, little is known about how childhood adversity influences the engagement of adolescents in cancer risk behaviours. This study aimed to determine the relationship between adverse childhood experiences and adolescent cancer risk behaviours. METHODS: Data were collected prospectively from birth to age 18 years on children born to mothers enrolled into the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort study. Multivariable linear regression models assessed relationships of a composite exposure measure comprised of adverse childhood experiences (total number of childhood adversities experienced from early infancy until age 9 years) with multiple cancer risk behaviours. The latter was expressed as a single continuous score for tobacco smoking, alcohol consumption, obesity, unsafe sex, and physical inactivity, at ages 11, 14, 16 and 18 years. Analysis was carried out on the complete case and imputation samples of 1,368 and 7,358 participants respectively. RESULTS: All adolescent cancer risk behaviours increased in prevalence as the adolescents grew older, except for obesity. Each additional adverse childhood experience was associated with a 0.25 unit increase in adolescent cancer risk behaviour (95% CI 0.16-0.34; p < 0.001). Individually, parental substance misuse (ß 0.64, 95% CI 0.25-1.03, p < 0.001) and parental separation (ß 0.56, 95% CI 0.27-0.86, p < 0.001) demonstrated the strongest evidence of association with engagement in adolescent cancer risk behaviour. CONCLUSION: Childhood adversity was associated with a greater degree of engagement in adolescent cancer risk behaviours. This finding demonstrates the need for targeted primary and secondary prevention interventions that reduce engagement across multiple cancer risk behaviours for children and adolescents who have experienced adversity in childhood, such as parental substance misuse and separation, and reduce exposure to adversity.


Subject(s)
Adverse Childhood Experiences , Neoplasms , Substance-Related Disorders , Child , Adolescent , Humans , Cohort Studies , Longitudinal Studies , Obesity , Substance-Related Disorders/epidemiology , Risk-Taking , Neoplasms/epidemiology , Neoplasms/etiology
19.
J Clin Immunol ; 44(2): 44, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231408

ABSTRACT

Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.


Subject(s)
Arthritis , Behcet Syndrome , Biological Products , Inflammatory Bowel Diseases , Male , Humans , Behcet Syndrome/diagnosis , Behcet Syndrome/genetics , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/genetics , Arthralgia , DNA-Binding Proteins , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...