Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22277638

ABSTRACT

IntroductionSepsis is characterised by dysregulated, life-threatening immune responses, which are thought to be driven by cytokines such as interleukin-6 (IL-6). Genetic variants in IL6R known to downregulate IL-6 signalling are associated with improved COVID-19 outcomes, a finding later confirmed in randomised trials of IL-6 receptor antagonists (IL6RA). We hypothesised that blockade of IL6R could also improve outcomes in sepsis. MethodsWe performed a Mendelian randomisation analysis using single nucleotide polymorphisms (SNPs) in and near IL6R to evaluate the likely causal effects of IL6R blockade on sepsis, sepsis severity, other infections, and COVID-19. We weighted SNPs by their effect on CRP and combined results across them in inverse variance weighted meta-analysis, proxying the effect of IL6RA. Our outcomes were measured in UK Biobank, FinnGen, the COVID-19 Host Genetics Initiative (HGI), and the GenOSept and GainS consortium. We performed several sensitivity analyses to test assumptions of our methods, including utilising variants around CRP in a similar analysis. ResultsIn the UK Biobank cohort (N=485,825, including 11,643 with sepsis), IL6R blockade was associated with a decreased risk of sepsis (OR=0.80; 95% CI 0.66-0.96, per unit of natural log transformed CRP decrease). The size of this effect increased with severity, with larger effects on 28-day sepsis mortality (OR=0.74; 95% CI 0.38-0.70); critical care admission with sepsis (OR=0.48, 95% CI 0.30-0.78) and critical care death with sepsis (OR=0.37, 95% CI 0.14 - 0.98) Similar associations were seen with severe respiratory infection: OR for pneumonia in critical care 0.69 (95% CI 0.49 - 0.97) and for sepsis survival in critical care (OR=0.22; 95% CI 0.04- 1.31) in the GainS and GenOSept consortium. We also confirm the previously reported protective effect of IL6R blockade on severe COVID-19 (OR=0.69, 95% 0.57 - 0.84) in the COVID-19 HGI, which was of similar magnitude to that seen in sepsis. Sensitivity analyses did not alter our primary results. ConclusionsIL6R blockade is causally associated with reduced incidence of sepsis, sepsis related critical care admission, and sepsis related mortality. These effects are comparable in size to the effect seen in severe COVID-19, where IL-6 receptor antagonists were shown to improve survival. This data suggests a randomised trial of IL-6 receptor antagonists in sepsis should be considered.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22275214

ABSTRACT

SARS-CoV-2 antibody levels can be used to assess humoral immune responses following SARS-CoV-2 infection or vaccination, and may predict risk of future infection. From cross-sectional antibody testing of 9,361 individuals from TwinsUK and ALSPAC UK population-based longitudinal studies (jointly in April-May 2021, and TwinsUK only in November 2021-January 2022), we tested associations between antibody levels following vaccination and: (1) SARS-CoV-2 infection following vaccination(s); (2) health, socio-demographic, SARS-CoV-2 infection and SARS-CoV-2 vaccination variables. Within TwinsUK, single-vaccinated individuals with the lowest 20% of anti-Spike antibody levels at initial testing had 3-fold greater odds of SARS-CoV-2 infection over the next six to nine months, compared to the top 20%. In TwinsUK and ALSPAC, individuals identified as at increased risk of COVID-19 complication through the UK "Shielded Patient List" had consistently greater odds (2 to 4-fold) of having antibody levels in the lowest 10%. Third vaccination increased absolute antibody levels for almost all individuals, and reduced relative disparities compared with earlier vaccinations. These findings quantify the association between antibody level and risk of subsequent infection, and support a policy of triple vaccination for the generation of protective antibodies. Lay summaryIn this study, we analysed blood samples from 9,361 participants from two studies in the UK: an adult twin registry, TwinsUK (4,739 individuals); and the Avon Longitudinal Study of Parents and Children, ALSPAC (4,622 individuals). We did this work as part of the UK Government National Core Studies initiative researching COVID-19. We measured blood antibodies which are specific to SARS-CoV-2 (which causes COVID-19). Having a third COVID-19 vaccination boosted antibody levels. More than 90% of people from TwinsUK had levels after third vaccination that were greater than the average level after second vaccination. Importantly, this was the case even in individuals on the UK "Shielded Patient List". We found that people with lower antibody levels after first vaccination were more likely to report having COVID-19 later on, compared to people with higher antibody levels. People on the UK "Shielded Patient List", and individuals who reported that they had poorer general health, were more likely to have lower antibody levels after vaccination. In contrast, people who had had a previous COVID-19 infection were more likely to have higher antibody levels following vaccination compared to people without infection. People receiving the Oxford/AstraZeneca rather than the Pfizer BioNTech vaccine had lower antibody levels after one or two vaccinations. However, after a third vaccination, there was no difference in antibody levels between those who had Oxford/AstraZeneca and Pfizer BioNTech vaccines for their first two doses. These findings support having a third COVID-19 vaccination to boost antibodies.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21259277

ABSTRACT

BackgroundThe impact of long COVID is considerable, but risk factors are poorly characterised. We analysed symptom duration and risk factor from 10 longitudinal study (LS) samples and electronic healthcare records (EHR). MethodsSamples: 6907 adults self-reporting COVID-19 infection from 48,901 participants in the UK LS, and 3,327 adults with COVID-19, were assigned a long COVID code from 1,199,812 individuals in primary care EHR. Outcomes for LS included symptom duration lasting 4+ weeks (long COVID) and 12+ weeks. Association with of age, sex, ethnicity, socioeconomic factors, smoking, general and mental health, overweight/obesity, diabetes, hypertension, hypercholesterolaemia, and asthma was assessed. ResultsIn LS, symptoms impacted normal functioning for 12+ weeks in 1.2% (mean age 20 years) to 4.8% (mean age 63 y) of COVID-19 cases. Between 7.8% (mean age 28 y) and 17% (mean age 58 y) reported any symptoms for 12+ weeks, and greater proportions for 4+ weeks. Age was associated with a linear increased risk in long COVID between 20 and 70 years. Being female (LS: OR=1.49; 95%CI:1.24-1.79; EHR: OR=1.51 [1.41-1.61]), having poor pre-pandemic mental health (LS: OR=1.46 [1.17-1.83]; EHR: OR=1.57 [1.47-1.68]) and poor general health (LS: OR=1.62 [1.25-2.09]; EHR: OR=1.26; [1.18-1.35]) were associated with higher risk of long COVID. Individuals with asthma (LS: OR=1.32 [1.07-1.62]; EHR: OR=1.56 [1.46-1.67]), and overweight or obesity (LS: OR=1.25 [1.01-1.55]; EHR: OR=1.31 [1.21-1.42]) also had higher risk. Non-white ethnic minority groups had lower risk (LS: OR=0.32 [0.22-0.47]), a finding consistent in EHR. . Few participants had been hospitalised (0.8-5.2%). ConclusionLong COVID is associated with sociodemographic and pre-existing health factors. Further investigations into causality should inform strategies to address long COVID in the population.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20191932

ABSTRACT

Background: Developing insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of critical importance to overcome the global pandemic caused by coronavirus disease 2019 (covid-19). In this study, we have applied Mendelian randomization (MR) to systematically evaluate the effect of 10 cardiometabolic risk factors and genetic liability to lifetime smoking on 97 circulating host proteins postulated to either interact or contribute to the maladaptive host response of SARS-CoV-2. Methods: We applied the inverse variance weighted (IVW) approach and several robust MR methods in a two-sample setting to systemically estimate the genetically predicted effect of each risk factor in turn on levels of each circulating protein. Multivariable MR was conducted to simultaneously evaluate the effects of multiple risk factors on the same protein. We also applied MR using cis-regulatory variants at the genomic location responsible for encoding these proteins to estimate whether their circulating levels may influence SARS-CoV-2 severity. Findings: In total, we identified evidence supporting 105 effects between risk factors and circulating proteins which were robust to multiple testing corrections and sensitivity analyses. For example, body mass index provided evidence of an effect on 23 circulating proteins with a variety of functions, such as inflammatory markers c-reactive protein (IVW Beta=0.34 per standard deviation change, 95% CI=0.26 to 0.41, P=2.19x10-16) and interleukin-1 receptor antagonist (IVW Beta=0.23, 95% CI=0.17 to 0.30, P=9.04x10-12). Further analyses using multivariable MR provided evidence that the effect of BMI on lowering immunoglobulin G, an antibody class involved in protecting the body from infection, is substantially mediated by raised triglycerides levels (IVW Beta=-0.18, 95% CI=-0.25 to -0.12, P=2.32x10-08, proportion mediated=44.1%). The strongest evidence that any of the circulating proteins highlighted by our initial analysis influence SARS-CoV-2 severity was identified for soluble glycoprotein 130 (odds ratio=1.81, 95% CI=1.25 to 2.62, P=0.002), a signal transductor for interleukin-6 type cytokines which are involved in the bodys inflammatory response. However, based on current case samples for severe SARS-CoV-2 we were unable to replicate findings in independent samples. Interpretation: Our findings highlight several key proteins which are influenced by established exposures for disease. Future research to determine whether these circulating proteins mediate environmental effects onto risk of SARS-CoV-2 are warranted to help elucidate therapeutic strategies for covid-19 disease severity.

SELECTION OF CITATIONS
SEARCH DETAIL
...