Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
PLoS Genet ; 18(10): e1010463, 2022 10.
Article in English | MEDLINE | ID: mdl-36288392

ABSTRACT

The WHO classifies t(6;9)-positive acute myeloid leukemia (AML) as a subgroup of high-risk AML because of its clinical and biological peculiarities, such as young age and therapy resistance. t(6;9) encodes the DEK/NUP214 fusion oncoprotein that targets only a small subpopulation of bone marrow progenitors for leukemic transformation. This distinguishes DEK/NUP214 from other fusion oncoproteins, such as PML/RARα, RUNX1/ETO, or MLL/AF9, which have a broad target population they block differentiation and increase stem cell capacity. A common theme among most leukemogenic fusion proteins is their aberrant localization compared to their wild-type counterparts. Although the actual consequences are widely unknown, it seems to contribute to leukemogenesis most likely by a sequester of interaction partners. Thus, we applied a global approach to studying the consequences of the aberrant localization of t(6;9)-DEK/NUP214 for its interactome. This study aimed to disclose the role of localization of DEK/NUP214 and the related sequester of proteins interacting with DEK/NUP214 for the determination of the biology of t(6;9)-AML. Here we show the complexity of the biological consequences of the expression of DEK/NUP214 by an in-depth bioinformatic analysis of the interactome of DEK/NUP214 and its biologically dead mutants. DEK/NUP214's interactome points to an essential role for aberrant RNA-regulation and aberrant regulation of apoptosis and leukocyte activation as a significant determinant of the phenotype of t(6;9)-AML. Taken together, we provide evidence that the interactome contributes to the aberrant biology of an oncoprotein, providing opportunities for developing novel targeted therapy approaches.


Subject(s)
Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Humans , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Bone Marrow/metabolism , Mutation , Poly-ADP-Ribose Binding Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism
2.
Ann Hematol ; 101(10): 2179-2193, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35941390

ABSTRACT

Patients within the WHO-subgroup of t(6;9)-positive acute myeloid leukemia (AML) differ from other AML subgroups as they are characterised by younger age and a grim prognosis. Leukemic transformation can often be attributed to single chromosomal aberrations encoding oncogenes, in the case of t(6;9)-AML to the fusion protein DEK-CAN (also called DEK-NUP214). As being a rare disease there is the urgent need for models of t(6;9)-AML. The only cell line derived from a t(6;9)-AML patient currently available is FKH1. By using phospho-proteomics on FKH1 cells, we found a strongly activated ABL1 kinase. Further investigation revealed the presence of ETV6-ABL1. This finding renders necessary to determine DEK-CAN- and ETV6-ABL1-related features when using FKH1. This can be done as ETV6-ABL1 activity in FKH1 is responsive to imatinib. Nevertheless, we provided evidence that both SFK and mTOR activation in FKH1 are DEK-CAN-related features as they were activated also in other t(6;9) and DEK-CAN-positive models. The activation of STAT5 previously shown to be strong in t(6;9)-AML and activated by DEK-CAN is regulated in FKH1 by both DEK-CAN and ETV6-ABL1. In conclusion, FKH1 cells still represent a model for t(6;9)-AML and could serve as model for ETV6-ABL1-positive AML if the presence of these leukemia-inducing oncogenes is adequately considered.Taken together, all our results provide clear evidence of novel and specific interdependencies between leukemia-inducing oncogenes and cancer signaling pathways which will influence the design of therapeutic strategies to better address the complexity of cancer signaling.


Subject(s)
Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Chromosomal Proteins, Non-Histone/genetics , Humans , Imatinib Mesylate , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Oncogene Proteins/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Signal Transduction , Translocation, Genetic
3.
Ann Hematol ; 100(8): 2023-2029, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34110462

ABSTRACT

Resistance remains the major clinical challenge for the therapy of Philadelphia chromosome-positive (Ph+) leukemia. With the exception of ponatinib, all approved tyrosine kinase inhibitors (TKIs) are unable to inhibit the common "gatekeeper" mutation T315I. Here we investigated the therapeutic potential of crizotinib, a TKI approved for targeting ALK and ROS1 in non-small cell lung cancer patients, which inhibited also the ABL1 kinase in cell-free systems, for the treatment of advanced and therapy-resistant Ph+ leukemia. By inhibiting the BCR-ABL1 kinase, crizotinib efficiently suppressed growth of Ph+ cells without affecting growth of Ph- cells. It was also active in Ph+ patient-derived long-term cultures (PD-LTCs) independently of the responsiveness/resistance to other TKIs. The efficacy of crizotinib was confirmed in vivo in syngeneic mouse models of BCR-ABL1- or BCR-ABL1T315I-driven chronic myeloid leukemia-like disease and in BCR-ABL1-driven acute lymphoblastic leukemia (ALL). Although crizotinib binds to the ATP-binding site, it also allosterically affected the myristol binding pocket, the binding site of GNF2 and asciminib (former ABL001). Therefore, crizotinib has a seemingly unique double mechanism of action, on the ATP-binding site and on the myristoylation binding pocket. These findings strongly suggest the clinical evaluation of crizotinib for the treatment of advanced and therapy-resistant Ph+ leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Crizotinib/pharmacology , Fusion Proteins, bcr-abl/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Jurkat Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Mutation/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/metabolism
6.
J Cancer ; 8(19): 3952-3968, 2017.
Article in English | MEDLINE | ID: mdl-29187870

ABSTRACT

Philadelphia chromosome-positive (Ph+) leukemia is characterized by reciprocal translocation between chromosomes 9 and 22. The resultant BCR/ABL fusion protein displays constitutive tyrosine kinase activity, leading to the induction of aberrant proliferation and neoplastic transformation. The bone marrow (BM) microenvironment is tumor-promoting, and contributes to disease recurrence in Ph+ leukemia. Activity in the BM microenvironment is mediated by several cellular compartments, extracellular matrix, various soluble factors including transforming growth factor beta 1 (TGF-ß1), and the hypoxic conditions in the BM niche. TGF-ß1 is released during bone remodeling and plays a role in maintaining leukemic stem cells, as well as being implicated in the epithelial-mesenchymal transition (EMT) process in most solid tumors. Although EMT is largely implicated in epithelial tumors, recent findings argue for an EMT-like process in leukemia as well. The surface receptor CD44 is involved in cell adhesion, cell migration, and homing of normal and malignant hematopoietic stem cells. Elevation of CD44 expression is considered a marker for a worse prognosis in most hematological malignancies. We explored the functions of Snail and Twist1 in Ph+ leukemia. We showed that ectopic expression of Snail and, to a lesser extent, Twist1, upregulates CD44 expression that is ß-catenin-dependent. Moreover, the presence of Snail or Twist1 partially blocked phorbol 12-myristate 13-acetate-induced megakaryocyte differentiation, while that of Twist significantly altered imatinib-induced erythroid differentiation. Thus EMT modulators affected proliferation, CD44 gene expression and differentiation ability of Ph+ leukemia cells.

7.
Genes Cancer ; 7(1-2): 36-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27014420

ABSTRACT

Targeting BCR/ABL with Tyrosine kinase inhibitors (TKIs) is a proven concept for the treatment of Philadelphia chromosome-positive (Ph+) leukemias but the "gatekeeper" mutation T315I confers resistance against all approved TKIs, with the only exception of ponatinib, a multi-targeted kinase inhibitor. Besides resistance to TKIs, T315I also confers additional features to the leukemogenic potential of BCR/ABL, involving endogenous BCR. Therefore we studied the role of BCR on BCR/ABL mutants lacking functional domains indispensable for the oncogenic activity of BCR/ABL. We used the factor independent growth of murine myeloid progenitor 32D cells and the transformation of Rat-1 fibroblasts both mediated by BCR/ABL. Here we report that T315I restores the capacity to mediate factor-independent growth and transformation potential of loss-of-function mutants of BCR/ABL. Targeting endogenous Bcr abrogated the capacity of oligomerization deficient mutant of BCR/ABL-T315I to mediate factor independent growth of 32D cells and strongly reduced their transformation potential in Rat-1 cells, as well as led to the up-regulation of mitogen activated protein kinase (MAPK) pathway. Our data show that the T315I restores the capacity of loss-of-function mutants to transform cells which is dependent on the transphosphorylation of endogenous Bcr, which becomes a putative therapeutic target to overcome resistance by T315I.

8.
BMC Cancer ; 16: 140, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26906901

ABSTRACT

BACKGROUND: Platinum-based drugs are used as cancer chemotherapeutics for the last 40 years. However, drug resistance and nephrotoxicity are the major limitations of the use of platinum-based compounds in cancer therapy. Platinum (IV) complexes are believed to act as platinum prodrugs and are able to overcome some of platinum (II) limitations. METHODS: A number of previously sensitized platinum (IV) complexes were evaluated for their anti-cancer activity by monitoring ability to affect proliferation, clonigenicity and apoptosis induction of Cisplatin sensitive and resistant cancer cells. In addition, the uptake of Cisplatin and the platinum (IV) derivatives to Cisplatin sensitive and resistant cancer cells was monitored. RESULTS: The bis-octanoatoplatinum (IV) complex (RJY13), a Cisplatin derivative with octanoate as axial ligand, exhibited strong anti-proliferative effect on the Cisplatin resistant and sensitive ovarian cells, A2780cisR and A2780, respectively. Moreover, RJY13 exhibited good activity in inhibiting clonigenicity of both cells. Anti-proliferative activity of RJY13 was mediated by induction of apoptosis. Interestingly, a bis-lauratopaltinum (IV) complex (RJY6) was highly potent in inhibiting clonigenicity of both Cisplatin sensitive and Cisplatin resistant cells, however, exhibited reduced activity in assays that utilize cells growing in two dimensional (2D) conditions. The uptake of Cisplatin was reduced by 30% in A2780 in which the copper transporter-1 (Ctr1) was silenced. Moreover, uptake of RJY6 was marginally dependent on Ctr1, while uptake of RJY13 was Ctr1-independent. CONCLUSIONS: Our data demonstrated the potential of platinum (IV) prodrugs in overcoming acquired and inherited drug resistance in cancer cell lines. Moreover, our data demonstrated that the uptake of Cisplatin is partially dependent on Ctr1 transporter, while uptake of RJY6 is marginally dependent on Ctr1 and RJY13 is Ctr1-independent. In addition, our data illustrated the therapeutic potential of platinum (IV) prodrugs in cancer therapy.


Subject(s)
Cation Transport Proteins/genetics , Cisplatin/pharmacology , Cytostatic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Organoplatinum Compounds/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation/drug effects , Copper Transporter 1 , Gene Knockout Techniques , HT29 Cells , Humans , In Vitro Techniques , Organoplatinum Compounds/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology
9.
PLoS Genet ; 11(4): e1005144, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25919613

ABSTRACT

The hallmark of Philadelphia chromosome positive (Ph(+)) leukemia is the BCR/ABL kinase, which is successfully targeted by selective ATP competitors. However, inhibition of BCR/ABL alone is unable to eradicate Ph(+) leukemia. The t(9;22) is a reciprocal translocation which encodes not only for the der22 (Philadelphia chromosome) related BCR/ABL, but also for der9 related ABL/BCR fusion proteins, which can be detected in 65% of patients with chronic myeloid leukemia (CML) and 100% of patients with Ph+ acute lymphatic leukemia (ALL). ABL/BCRs are oncogenes able to influence the lineage commitment of hematopoietic progenitors. Aim of this study was to further disclose the role of p96(ABL/BCR) for the pathogenesis of Ph(+) ALL. The co-expression of p96(ABL/BCR) enhanced the kinase activity and as a consequence, the transformation potential of p185(BCR/ABL). Targeting p96(ABL/BCR) by RNAi inhibited growth of Ph(+) ALL cell lines and Ph(+) ALL patient-derived long-term cultures (PD-LTCs). Our in vitro and in vivo stem cell studies further revealed a functional hierarchy of p96(ABL/BCR) and p185(BCR/AB)L in hematopoietic stem cells. Co-expression of p96(ABL/BCR) abolished the capacity of p185(BCR/ABL) to induce a CML-like disease and led to the induction of ALL. Taken together our here presented data reveal an important role of p96(ABL/BCR) for the pathogenesis of Ph(+) ALL.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic/genetics , Cell Line, Tumor , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 9/genetics , Fusion Proteins, bcr-abl/biosynthesis , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/pathology , Humans , Philadelphia Chromosome , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
10.
Cancer Res ; 74(18): 5244-55, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25082812

ABSTRACT

Nonsteroidal anti-inflammatory drugs such as sulindac inhibit Wnt signaling, which is critical to maintain cancer stem cell-like cells (CSC), but they also suppress the activity of 5-lipoxygenase (5-LO) at clinically feasible concentrations. Recently, 5-LO was shown to be critical to maintain CSC in a model of chronic myeloid leukemia. For these reasons, we hypothesized that 5-LO may offer a therapeutic target to improve the management of acute myeloid leukemia (AML), an aggressive disease driven by CSCs. Pharmacologic and genetic approaches were used to evaluate the effects of 5-LO blockade in a PML/RARα-positive model of AML. As CSC models, we used Sca-1(+)/lin(-) murine hematopoietic stem and progenitor cells (HSPC), which were retrovirally transduced with PML/RARα. We found that pharmacologic inhibition of 5-LO interfered strongly with the aberrant stem cell capacity of PML/RARα-expressing HSPCs. Through small-molecule inhibitor studies and genetic disruption of 5-LO, we also found that Wnt and CSC inhibition is mediated by the enzymatically inactive form of 5-LO, which hinders nuclear translocation of ß-catenin. Overall, our findings revealed that 5-LO inhibitors also inhibit Wnt signaling, not due to the interruption of 5-LO-mediated lipid signaling but rather due to the generation of a catalytically inactive form of 5-LO, which assumes a new function. Given the evidence that CSCs mediate AML relapse after remission, eradication of CSCs in this setting by 5-LO inhibition may offer a new clinical approach for immediate evaluation in patients with AML. Cancer Res; 74(18); 5244-55. ©2014 AACR.


Subject(s)
Arachidonate 5-Lipoxygenase/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Lipoxygenase Inhibitors/pharmacology , Neoplastic Stem Cells/drug effects , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/enzymology , Male , Mice , Mice, Inbred C57BL , Plasmids , Signal Transduction , Transfection
11.
Genes Cancer ; 5(11-12): 378-92, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25568664

ABSTRACT

Acute myeloid leukemia (AML) is characterized by an aberrant self-renewal of hematopoietic stem cells (HSC) and a block in differentiation. The major therapeutic challenge is the characterization of the leukemic stem cell as a target for the eradication of the disease. Until now the biology of AML-associated fusion proteins (AAFPs), such as the t(15;17)-PML/RARα, t(8;21)-RUNX1/RUNX1T1 and t(6;9)-DEK/NUP214, all able to induce AML in mice, was investigated in different models and genetic backgrounds, not directly comparable to each other. To avoid the bias of different techniques and models we expressed these three AML-inducing oncogenes in an identical genetic background and compared their influence on the HSC compartment in vitro and in vivo. These AAFPs exerted differential effects on HSCs and PML/RARα, similar to DEK/NUP214, induced a leukemic phenotype from a small subpopulation of HSCs with a surface marker pattern of long-term HSC and characterized by activated STAT3 and 5. In contrast the established AML occurred from mature populations in the bone marrow. The activation of STAT5 by PML/RARα and DEK/NUP214 was confirmed in t(15;17)(PML/RARα) and t(6;9)(DEK/NUP214)-positive patients as compared to normal CD34+ cells. The activation of STAT5 was reduced upon the exposure to Arsenic which was accompanied by apoptosis in both PML/RARα- and DEK/NUP214-positive leukemic cells. These findings indicate that in AML the activation of STATs plays a decisive role in the biology of the leukemic stem cell. Furthermore we establish exposure to arsenic as a novel concept for the treatment of this high risk t(6;9)-positive AML.

12.
PLoS One ; 8(11): e80070, 2013.
Article in English | MEDLINE | ID: mdl-24244612

ABSTRACT

PURPOSE: Aberrant PI3K/AKT/mTOR signaling has been linked to oncogenesis and therapy resistance in various malignancies including leukemias. In Philadelphia chromosome (Ph) positive leukemias, activation of PI3K by dysregulated BCR-ABL tyrosine kinase (TK) contributes to the pathogenesis and development of resistance to ABL-TK inhibitors (TKI). The PI3K pathway thus is an attractive therapeutic target in BCR-ABL positive leukemias, but its role in BCR-ABL negative ALL is conjectural. Moreover, the functional contribution of individual components of the PI3K pathway in ALL has not been established. EXPERIMENTAL DESIGN: We compared the activity of the ATP-competitive pan-PI3K inhibitor NVP-BKM120, the allosteric mTORC1 inhibitor RAD001, the ATP-competitive dual PI3K/mTORC1/C2 inhibitors NVP-BEZ235 and NVP-BGT226 and the combined mTORC1 and mTORC2 inhibitors Torin 1, PP242 and KU-0063794 using long-term cultures of ALL cells (ALL-LTC) from patients with B-precursor ALL that expressed the BCR-ABL or TEL-ABL oncoproteins or were BCR-ABL negative. RESULTS: Dual PI3K/mTOR inhibitors profoundly inhibited growth and survival of ALL cells irrespective of their genetic subtype and their responsiveness to ABL-TKI. Combined suppression of PI3K, mTORC1 and mTORC2 displayed greater antileukemic activity than selective inhibitors of PI3K, mTORC1 or mTORC1 and mTORC2. CONCLUSIONS: Inhibition of the PI3K/mTOR pathway is a promising therapeutic approach in patients with ALL. Greater antileukemic activity of dual PI3K/mTORC1/C2 inhibitors appears to be due to the redundant function of PI3K and mTOR. Clinical trials examining dual PI3K/mTORC1/C2 inhibitors in patients with B-precursor ALL are warranted, and should not be restricted to particular genetic subtypes.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , Phosphoinositide-3 Kinase Inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Aminopyridines/pharmacology , Drug Synergism , Everolimus , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Imidazoles/pharmacology , Lymphocytes/drug effects , Lymphocytes/metabolism , Lymphocytes/pathology , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Morpholines/pharmacology , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Naphthyridines/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Quinolines/pharmacology , Signal Transduction/drug effects , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
13.
Mol Biol Rep ; 40(3): 2205-13, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23212614

ABSTRACT

Chronic myeloid leukemia (CML) is characterized by the presence of p210(Bcr-Abl) which exhibits an abnormal kinase activity. Selective Abl kinase inhibitors have been successfully established for the treatment of CML. Despite high rates of clinical response, CML patients can develop resistance against these kinase inhibitors mainly due to point mutations within the Abl protein kinase domain. Previously, we have identified oleic acid as the active component in the mushroom Daedalea gibbosa that inhibited the kinase activity of Bcr-Abl. Here, we report that the oleyl amine derivatives, S-1-(1-Hydroxymethyl-2-methyl-propyl)-3-octadec-9-enyl-urea [oleylaminocarbonyl-L-N-valinol,oroleylaminocarbonyl-S-2-isopropyl-N-ethanolamine,oleylamine-carbonyl-L-valinol] (cpd 6) and R-1-(1-Hydroxymethyl-2-methyl-propyl)-3-octadec-9-enyl-urea [oleylamineocarbonyl-D-N-valinol, oleylaminocarbonyl-R-2-isopropyl-N-ethanolamine, or oleylamine-carbonyl-D-valinol] (cpd 7), inhibited the activity of the native and T315I mutated Bcr-Abl. Furthermore, cpd 6 and 7 exhibited higher activity towards the oncogenic Bcr-Abl in comparison to native c-Abl in SupB15 Ph-positive ALL cell line.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Valine/analogs & derivatives , Amines/chemistry , Cell Line, Tumor , Dose-Response Relationship, Drug , Fusion Proteins, bcr-abl/chemistry , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , Tumor Stem Cell Assay , Valine/chemistry , Valine/pharmacology
14.
BMC Cancer ; 12: 563, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23186157

ABSTRACT

BACKGROUND: Philadelphia positive leukemias are characterized by the presence of Bcr-Abl fusion protein which exhibits an abnormal kinase activity. Selective Abl kinase inhibitors have been successfully established for the treatment of Ph (+) leukemias. Despite high rates of clinical response, Ph (+) patients can develop resistance against these kinase inhibitors mainly due to point mutations within the Abl protein. Of special interest is the 'gatekeeper' T315I mutation, which confers complete resistance to Abl kinase inhibitors. Recently, GNF-2, Abl allosteric kinase inhibitor, was demonstrated to possess cellular activity against Bcr-Abl transformed cells. Similarly to Abl kinase inhibitors (AKIs), GNF-2 failed to inhibit activity of mutated Bcr-Abl carrying the T315I mutation. METHODS: Ba/F3 cells harboring native or T315I mutated Bcr-Abl constructs were treated with GNF-2 and AKIs. We monitored the effect of GNF-2 with AKIs on the proliferation and clonigenicity of the different Ba/F3 cells. In addition, we monitored the auto-phosphorylation activity of Bcr-Abl and JAK2 in cells treated with GNF-2 and AKIs. RESULTS: In this study, we report a cooperation between AKIs and GNF-2 in inhibiting proliferation and clonigenicity of Ba/F3 cells carrying T315I mutated Bcr-Abl. Interestingly, cooperation was most evident between Dasatinib and GNF-2. Furthermore, we showed that GNF-2 was moderately active in inhibiting the activity of JAK2 kinase, and presence of AKIs augmented GNF-2 activity. CONCLUSIONS: Our data illustrated the ability of allosteric inhibitors such as GNF-2 to cooperate with AKIs to overcome T315I mutation by Bcr-Abl-independent mechanisms, providing a possibility of enhancing AKIs efficacy and overcoming resistance in Ph+ leukemia cells.


Subject(s)
Antineoplastic Agents/pharmacology , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Drug Therapy, Combination/methods , Genes, abl , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mutation/drug effects , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use
15.
BMC Cancer ; 12: 411, 2012 Sep 17.
Article in English | MEDLINE | ID: mdl-22985168

ABSTRACT

BACKGROUND: Chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphatic leukemia (Ph + ALL) are caused by the t(9;22), which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase "escapes" the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs) Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the 'gatekeeper' mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. METHODS: The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC) from Ph + ALL-patients. RESULTS: Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. CONCLUSIONS: Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Allosteric Regulation/drug effects , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Colony-Forming Units Assay , Dasatinib , Female , Gene Expression , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mice , Pyrimidines/pharmacology , Thiazoles/pharmacology
16.
Cell Cycle ; 11(17): 3219-26, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22895185

ABSTRACT

Acute myeloid leukemia (AML) is a highly malignant disease that is not curable in the majority of patients. Numerous non-random genetic abnormalities are known, among which several translocations such as PLZF/RARα or AML1/ETO are known to aberrantly recruit histone deacetylases. Deacetylase inhibitors (DACi) are promising drugs leading to growth inhibition, cell cycle arrest, premature senescence and apoptosis in malignant cells. It is believed that DACi may have clinical efficacy by eradicating the most primitive population of leukemic stem and progenitor cells, possibly by interfering with self-renewal. The aim of the study was to investigate the effects of DACi on leukemic stem and progenitor cells using murine transduction-transplantation models of hematopoietic cells harboring the leukemia-associated fusion proteins (LAFP) PLZF/RARα or a truncated AML1/ETO protein (AML1/ETO exon 9). We show that the self-renewal and short-term repopulation capacity of AML1/ETO- or PLZF/RARα-expressing Sca1+/lin- stem and progenitor cells are profoundly inhibited by clinically applicable concentrations of the DACi dacinostat and vorinostat. To further investigate the mechanisms underlying these effects, we examined the impact of DACi on the transcription factor c-MYC and the Polycomb group protein BMI1, which are induced by LAFP and involved in leukemic transformation. In AML1/ETO or PLZF/RARα-positive 32D cells, DACi-mediated antiproliferative effects were associated with downregulation of BMI1 and c-MYC protein levels. Similar effects were demonstrated in primary samples of cytogenetically defined high-risk AML patients. In conclusion, DACi may be effective as maintenance therapy by negatively interfering with signaling pathways that control survival and proliferation of leukemic stem and progenitor cells.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Hematopoietic Stem Cells/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Leukemia, Myeloid, Acute/drug therapy , Neoplastic Stem Cells/drug effects , Animals , Blotting, Western , Colony-Forming Units Assay , Core Binding Factor Alpha 2 Subunit/metabolism , DNA Primers/genetics , Gene Expression Regulation, Neoplastic/physiology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Mice , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Vorinostat
17.
Cytotherapy ; 14(1): 91-103, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21973023

ABSTRACT

BACKGROUND AIMS: Cytokine-induced killer (CIK) cells may serve as an alternative approach to adoptive donor lymphocyte infusions (DLI) for patients with acute leukemia relapsing after haplo-identical hematopoietic stem cell transplantation (HSCT). We investigated the feasibility of enhancing CIK cell-mediated cytotoxicity by interleukin (IL)-15 against acute myeloid and lymphoblastic leukemia/lymphoma cells. METHODS: CIK cells were activated using IL-2 (CIK(IL-2)) or IL-15 (CIK(IL-15)) and phenotypically analyzed by fluorescence-activated cell sorting (FACS). Cytotoxic potential was measured by europium release assay. RESULTS: CIK(IL-2) cells showed potent cytotoxicity against the T-lymphoma cell line H9, T-cell acute lymphoblastic leukemia (T-ALL) cell line MOLT-4 and subtype M4 acute myeloid leukemia (AML) cell line THP-1, but low cytotoxicity against the precursor B (pB)-cell ALL cell line Tanoue. IL-15 stimulation resulted in a significant enhancement of CIK cell-mediated cytotoxicity against acute lymphoblastic leukemia/lymphoma cell lines as well as against primary acute myeloid and defined lymphoblastic leukemia cells. However, the alloreactive potential of CIK(IL-15) cells remained low. Further analysis of CIK(IL-15) cells demonstrated that the NKG2D receptor is apparently involved in the recognition of target cells whereas killer-cell immunoglobulin-like receptor (KIR)-HLA mismatches contributed to a lesser extent to the CIK(IL-15) cell-mediated cytotoxicity. In this context, CD3 (+) CD8 (+) CD25 (+) CD56(-) CIK(IL-15) cell subpopulations were more effective in the lysis of AML cells, in contrast with CD56 (+) CIK(IL-15) cells, which showed the highest cytotoxic potential against ALL cells. CONCLUSIONS: This study provides the first evidence that CIK(IL-15) cells may offer a therapeutic option for patients with refractory or relapsed leukemia following haplo-identical HSCT.


Subject(s)
Adjuvants, Immunologic/pharmacology , Immunotherapy, Adoptive , Interleukin-15/pharmacology , Killer Cells, Natural/metabolism , Lymphocytes, Tumor-Infiltrating/drug effects , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Antigens, Neoplasm/immunology , Cell Line, Tumor , Contraindications , Cytotoxicity, Immunologic , Feasibility Studies , Hematopoietic Stem Cell Transplantation , Humans , Immunity, Cellular , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukocyte Transfusion , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Polymorphism, Genetic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recurrence , Transplantation, Homologous
18.
Haematologica ; 97(2): 251-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22058195

ABSTRACT

BACKGROUND: The t(9;22) translocation leads to the formation of the chimeric breakpoint cluster region/c-abl oncogene 1 (BCR/ABL) fusion gene on der22, the Philadelphia chromosome. The p185(BCR/ABL) or the p210(BCR/ABL) fusion proteins are encoded as a result of the translocation, depending on whether a "minor" or "major" breakpoint occurs, respectively. Both p185(BCR/ABL) and p210(BCR/ABL) exhibit constitutively activated ABL kinase activity. Through fusion to BCR the ABL kinase in p185(BCR/ABL) and p210(BCR/ABL) "escapes" the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. A novel class of compounds including GNF-2 restores allosteric inhibition of the kinase activity and the transformation potential of BCR/ABL. Here we investigated whether there are differences between p185(BCR/ABL) and p210(BCR/ABL) regarding their sensitivity towards allosteric inhibition by GNF-2 in models of Philadelphia chromosome-positive acute lymphatic leukemia. DESIGN AND METHODS: We investigated the anti-proliferative activity of GNF-2 in different Philadelphia chromosome-positive acute lymphatic leukemia models, such as cell lines, patient-derived long-term cultures and factor-dependent lymphatic Ba/F3 cells expressing either p185(BCR/ABL) or p210(BCR/ABL) and their resistance mutants. RESULTS: The inhibitory effects of GNF-2 differed constantly between p185(BCR/ABL) and p210(BCR/ABL) expressing cells. In all three Philadelphia chromosome-positive acute lymphatic leukemia models, p210(BCR/ABL)-transformed cells were more sensitive to GNF-2 than were p185BCR/ABL-positive cells. Similar results were obtained for p185(BCR/ABL) and the p210(BCR/ABL) harboring resistance mutations. CONCLUSIONS: Our data provide the first evidence of a differential response of p185(BCR/ABL)- and p210(BCR/ABL)- transformed cells to allosteric inhibition by GNF-2, which is of importance for the treatment of patients with Philadelphia chromosome-positive acute lymphatic leukemia.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Pyrimidines/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Cell Line, Tumor , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Pyrimidines/therapeutic use
19.
PLoS One ; 6(7): e22540, 2011.
Article in English | MEDLINE | ID: mdl-21811629

ABSTRACT

Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and ß-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both ß-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Oncogene Proteins, Fusion/metabolism , Sulindac/analogs & derivatives , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Hematopoietic Stem Cells/drug effects , Humans , Mice , Phenotype , Signal Transduction/drug effects , Sulindac/pharmacology , Time Factors , Wnt Proteins/metabolism , beta Catenin/metabolism , gamma Catenin/metabolism
20.
Anticancer Res ; 31(1): 177-83, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21273596

ABSTRACT

The hallmark of chronic myeloid leukemia (CML) is the abnormal activity of p210(Bcr-Abl) kinase. Selective kinase inhibitors such as imatinib or nilotinib have been established successfully for the treatment of CML. Despite high rates of clinical response, CML patients can develop resistance to these kinase inhibitors mainly due to point mutations within the Abl kinase domain of the fusion protein. Previously, we reported that a crude extract of the mushroom Daedalea gibbosa inhibited kinase activity of Bcr-Abl kinase. Here we report on the identification of the active component of Daedalea gibbosa, oleic acid, which inhibited Bcr-Abl kinase autophosphorylation in Ba/F3 cells and exhibited anti-CML activity in a BCR/ABL-positive mouse model.


Subject(s)
Agaricales/chemistry , Antineoplastic Agents/therapeutic use , Fusion Proteins, bcr-abl/antagonists & inhibitors , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Oleic Acid/therapeutic use , Plant Extracts/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Chromatography, High Pressure Liquid , Female , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Mice , Mice, Nude , Oleic Acid/isolation & purification , Phosphorylation/drug effects , Precursor Cells, B-Lymphoid/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...