Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 9(12): 2690-703, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20702783

ABSTRACT

An assessment of the total protein composition of filovirus (ebolavirus and marburgvirus) virions is currently lacking. In this study, liquid chromatography-linked tandem mass spectrometry of purified ebola and marburg virions was performed to identify associated cellular proteins. Host proteins involved in cell adhesion, cytoskeleton, cell signaling, intracellular trafficking, membrane organization, and chaperones were identified. Significant overlap exists between this data set and proteomic studies of disparate viruses, including HIV-1 and influenza A, generated in multiple cell types. However, the great majority of proteins identified here have not been previously described to be incorporated within filovirus particles. Host proteins identified by liquid chromatography-linked tandem mass spectrometry could lack biological relevance because they represent protein contaminants in the virus preparation, or because they are incorporated within virions by chance. These issues were addressed using siRNA library-mediated gene knockdown (targeting each identified virion-associated host protein), followed by filovirus infection. Knockdown of several host proteins (e.g. HSPA5 and RPL18) significantly interfered with ebolavirus and marburgvirus infection, suggesting specific and relevant virion incorporation. Notably, select siRNAs inhibited ebolavirus, but enhanced marburgvirus infection, suggesting important differences between the two viruses. The proteomic analysis presented here contributes to a greater understanding of filovirus biology and potentially identifies host factors that can be targeted for antiviral drug development.


Subject(s)
Filoviridae/metabolism , Proteomics , RNA Interference , Viral Proteins/metabolism , Virion/metabolism , Amino Acid Sequence , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Gene Knockdown Techniques , Microscopy, Fluorescence , Molecular Sequence Data , Polymerase Chain Reaction , Tandem Mass Spectrometry , Viral Proteins/chemistry , Viral Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 107(30): 13336-41, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20624966

ABSTRACT

The efficiency of HIV infection is greatly enhanced when the virus is delivered at conjugates between CD4+ T cells and virus-bearing antigen-presenting cells such as macrophages or dendritic cells via specialized structures known as virological synapses. Using ion abrasion SEM, electron tomography, and superresolution light microscopy, we have analyzed the spatial architecture of cell-cell contacts and distribution of HIV virions at virological synapses formed between mature dendritic cells and T cells. We demonstrate the striking envelopment of T cells by sheet-like membrane extensions derived from mature dendritic cells, resulting in a shielded region for formation of virological synapses. Within the synapse, filopodial extensions emanating from CD4+ T cells make contact with HIV virions sequestered deep within a 3D network of surface-accessible compartments in the dendritic cell. Viruses are detected at the membrane surfaces of both dendritic cells and T cells, but virions are not released passively at the synapse; instead, virus transfer requires the engagement of T-cell CD4 receptors. The relative seclusion of T cells from the extracellular milieu, the burial of the site of HIV transfer, and the receptor-dependent initiation of virion transfer by T cells highlight unique aspects of cell-cell HIV transmission.


Subject(s)
Dendritic Cells/virology , HIV/physiology , T-Lymphocytes/virology , Virion/physiology , Antigen-Presenting Cells/metabolism , Antigen-Presenting Cells/ultrastructure , Antigen-Presenting Cells/virology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/ultrastructure , CD4-Positive T-Lymphocytes/virology , Cell Communication , Dendritic Cells/metabolism , Dendritic Cells/ultrastructure , Host-Pathogen Interactions , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microscopy, Fluorescence , T-Lymphocytes/metabolism , T-Lymphocytes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...