Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4171, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264620

ABSTRACT

There is interest in utilizing wood ash as an amendment in forestry operations as a mechanism to return nutrients to soils that are removed during harvesting, with the added benefit of diverting this bioenergy waste material from landfill sites. Existing studies have not arrived at a consensus on what the effects of wood ash amendments are on soil biota. We collected forest soil samples from studies in managed forests across Canada that were amended with wood ash to evaluate the effects on arthropod, bacterial and fungal communities using metabarcoding of F230, 16S, 18S and ITS2 sequences as well as enzyme analyses to assess its effects on soil biotic function. Ash amendment did not result in consistent effects across sites, and those effects that were detected were small. Overall, this study suggests that ash amendment applied to managed forest systems in amounts (up to 20 Mg ha-1) applied across the 8 study sties had little to no detectable effects on soil biotic community structure or function. When effects were detected, they were small, and site-specific. These non-results support the application of wood ash to harvested forest sites to replace macronutrients (e.g., calcium) removed by logging operations, thereby diverting it from landfill sites, and potentially increasing stand productivity.


Subject(s)
Soil Pollutants , Soil , Biota , Forestry , Forests , Soil/chemistry , Soil Pollutants/analysis
2.
Sci Total Environ ; 804: 150066, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34520931

ABSTRACT

To make sound decisions regarding management of heavy metal contamination in soils, it is necessary to understand contaminant transformations over extended periods. In this study, sequential extraction methods were applied to quantify the changes of Cr fractions [available Cr(VI), immobile Cr(VI) and immobile Cr(III)] in five contrasting soils spiked with Cr(VI) over a 240-day incubation. Results showed that available Cr(VI) in soils continually decreased during aging, with a sharp decline occurring in the first 30 days. The best fit of available Cr(VI) data was obtained using an Elovich model for Brunisol and Anthrosol-1, a fractional power model for Anthrosol-2, and a pseudo first-order kinetic model for Luvisol-1 and Luvisol-2. After aging for 240 days, immobile Cr(VI) increased by 4.5-31% and immobile Cr(III) increased by 68-95% of total spiked Cr(VI) in Brunisol, Anthrosol-1 and Anthrosol-2. The two Luvisol soils had relatively high reduction rates with no Cr(VI) immobilized. A multireaction model was developed in MATLAB Simulink toolbox to describe transformation flow rates among soluble Cr(VI), adsorbed Cr(VI), immobilized Cr(VI) and immobilized Cr(III) in soils with aging. We conclude that (i) Cr(VI) reduction and immobilization were occurring concurrently in soils and competing for available Cr(VI) species; (ii) Cr(VI) reduction is favored by low soil pH and high organic carbon, while Cr(VI) immobilization occurs with cations (such as Ca2+) and Fe oxides.


Subject(s)
Soil Pollutants , Soil , Chromium/analysis , Oxidation-Reduction , Soil Pollutants/analysis
3.
Waste Manag ; 121: 186-197, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360817

ABSTRACT

Biomass ashes are potential soil amendments that reduce soil acidity and provide plant nutrients, but trace elements in ash may be leached from the solid phase, thereby posing environmental concerns. We determined the leachability of selected major elements, trace elements and anions from wood derived bottom ash generated from an updraft gasifier as influenced by ash pretreatments and the presence of soil via serial aqueous batch extraction. We found that self-hardening reduced initial solubility and reactivity of ash (i.e. lowered electrical conductivity), and reduced initial aqueous concentrations of Ba, Ca, Cu, Fe, Hg, Pb, Sr and Zn. But, hardening of ash increased initial aqueous concentrations of B, Cr, P, Se and SO42-. Although mixing ash into soil (5% ash by mass) generally decreased the mobility of most constituents, aqueous concentrations of P and As were increased relative to that of either ash-alone or soil-alone treatments. Overall, extract concentrations of constituents in various treatments were relatively low. Results of this serial batch extraction support the use of clean wood-derived bottom ash as a safe and environmentally suitable soil amendment.


Subject(s)
Soil Pollutants , Trace Elements , Biomass , Coal Ash/analysis , Soil , Soil Pollutants/analysis , Trace Elements/analysis
4.
Environ Sci Technol ; 54(12): 7226-7235, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32432861

ABSTRACT

Chromium speciation in naturally contaminated soils appears more complex than spiked studies have shown. This study characterized Cr speciation (oxidation states; availability; molecular geometry) intended to highlight the genesis of immobile Cr(VI) species in long-term tannery waste-contaminated soils. In a series of samples obtained from Shuitou in China, chemical extraction methods showed that Cr(III) was dominant(>96.7% of total Cr), with Cr(VI) concentration up to 144 mg kg-1. Of the total Cr(VI) present, immobile Cr(VI) represents >90%. Synchrotron-based X-ray near-edge structure spectroscopy (XANES) showed the occurrence of Cr(VI), which was not removed by phosphate buffer extraction, confirming a significant amount of immobile Cr(VI) fractions in soils. X-ray fluorescence maps exhibited the heterogeneous distribution of Cr in soils associated with both Mn and Fe. Such a distribution suggests Cr(III) oxidation to Cr(VI) by Mn oxides and a possible immobilization of both Cr(III) and Cr(VI) onto Fe (hydr)oxides. Linear combination fitting of XANES spectra revealed that fractional weights (%) in samples were CrFeO3 (49.3-53.6), CrOOH (22.3-30.8), and CaCrO4 (13.2-25.3). Our results demonstrate that (i) Cr(VI) is immobilized in soils and (ii) mechanisms of Cr(VI) immobilization are CaCrO4 precipitation and recrystallization with Fe (hydr)oxides.


Subject(s)
Soil Pollutants , China , Chromium/analysis , Oxidation-Reduction , Soil , Soil Pollutants/analysis
5.
Environ Microbiol Rep ; 2(4): 587-93, 2010 Aug.
Article in English | MEDLINE | ID: mdl-23766229

ABSTRACT

Petroleum hydrocarbon (PHC) contamination is becoming more common in boreal forest soils. However, linkages between PHC biodegradation and microbial community dynamics in the mycorrhizosphere of boreal forest soils are poorly understood. Seedlings (lodgepole pine, paper birch, lingonberry) were established in reconstructed soil systems, consisting of an organic layer (mor humus, coarse woody debris, or previously oil-contaminated mor humus) overlying mineral (Ae, Bf) horizons. Light crude oil was applied to the soil surface after 4 months; systems were destructively sampled at 1 and 16 weeks following treatment. Soil concentrations of four PHC fractions were determined using acetone-hexane extraction followed by gas chromatography - flame ionization detection analysis. Genotypic profiles of root-associated bacterial communities were generated using length heterogeneity-PCR of 16S rDNA. Most plant-soil treatments showed significant loss in the smaller fraction PHCs indicating an inherent capacity for biodegradation. Concentrations of total PHCs declined significantly only in planted (pine-woody debris and birch-humus) systems (averaging 59% and 82% loss between 1 and 16 weeks respectively), reinforcing the importance of the mycorrhizosphere for enhancing microbial catabolism. Bacterial community structure was correlated more with mycorrhizosphere type and complexity than with PHC contamination. However, results suggest that communities in PHC-contaminated and pristine soils may become distinct over time.

6.
Biol Rev Camb Philos Soc ; 82(2): 213-40, 2007 May.
Article in English | MEDLINE | ID: mdl-17437558

ABSTRACT

The importance of developing multi-disciplinary approaches to solving problems relating to anthropogenic pollution is now clearly appreciated by the scientific community, and this is especially evident in boreal ecosystems exposed to escalating threats of petroleum hydrocarbon (PHC) contamination through expanded natural resource extraction activities. This review aims to synthesize information regarding the fate and behaviour of PHCs in boreal forest soils in both ecological and sustainable management contexts. From this, we hope to evaluate potential management strategies, identify gaps in knowledge and guide future research. Our central premise is that mycorrhizal systems, the ubiquitous root symbiotic fungi and associated food-web communities, occupy the structural and functional interface between decomposition and primary production in northern forest ecosystems (i.e. underpin survival and productivity of the ecosystem as a whole), and, as such, are an appropriate focal point for such a synthesis. We provide pertinent basic information about mycorrhizas, followed by insights into the ecology of ecto- and ericoid mycorrhizal systems. Next, we review the fate and behaviour of PHCs in forest soils, with an emphasis on interactions with mycorrhizal fungi and associated bacteria. Finally, we summarize implications for ecosystem management. Although we have gained tremendous insights into understanding linkages between ecosystem functions and the various aspects of mycorrhizal diversity, very little is known regarding rhizosphere communities in PHC-contaminated soils. This makes it difficult to translate ecological knowledge into environmental management strategies. Further research is required to determine which fungal symbionts are likely to survive and compete in various ecosystems, whether certain fungal - plant associations gain in ecological importance following contamination events, and how PHC contamination may interfere with processes of nutrient acquisition and exchange and metabolic processes. Research is also needed to assess whether the metabolic capacity for intrinsic decomposition exists in these ecosystems, taking into account ecological variables such as presence of other organisms (and their involvement in syntrophic biodegradation), bioavailability and toxicity of mixtures of PHCs, and physical changes to the soil environment.


Subject(s)
Ecosystem , Mycorrhizae/physiology , Petroleum/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Trees/microbiology , Biodegradation, Environmental , Fungi/growth & development , Fungi/metabolism , Petroleum/adverse effects , Plant Roots/metabolism , Plant Roots/microbiology , Soil Pollutants/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...