Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Detect Prev ; 32(1): 65-71, 2008.
Article in English | MEDLINE | ID: mdl-18407436

ABSTRACT

BACKGROUND: Breast cancer prevention trials have shown that the antiestrogen tamoxifen inhibits development of estrogen receptor (ER)-positive tumors. In Sprague-Dawley rats, removal of ovarian function in young animals can reduce the incidence of spontaneous age-dependent mammary tumors. However, it is not known whether removal of ovaries late in life, before middle age onset, can still prevent mammary tumor development. METHODS: In this study we used Hsd:Sprague-Dawley SD (Hsd) rats to determine the effect of late ovariectomy on mammary tumor development. Intact, sham-ovariectomized and ovariectomized rats were followed until 110 weeks of age, or over their life span. In some experiments, palpable tumors were surgically removed upon presentation. RESULTS: Removal of ovaries before middle age onset ( approximately 5-7 months) inhibited development of spontaneous mammary tumors by 95%. Only one mammary tumor was observed in 19 late ovariectomized animals while 47 total tumors developed in 42 non-ovariectomized animals. Tumor incidence was reduced from 73.8 to 5.3% (relative risk=0.05, 95% CI=0.0072-0.354). The frequency of mammary carcinomas in non-ovariectomized virgin female rats was one in eight rats. Spontaneous rat carcinomas expressed ER and other biomarkers, such as cyclin D1. When palpable tumors were removed by surgical excision, tumor multiplicity increased from 0.76 to 1.61 tumors per rat. Surprisingly, ovariectomy increased the 110-week survival rate and maximum life span of Hsd rats. CONCLUSION: Late ovariectomy prevents spontaneous mammary tumor development in Hsd rats. This animal model may be useful for evaluating novel interventions in breast cancer prevention.


Subject(s)
Mammary Neoplasms, Experimental/prevention & control , Mammary Neoplasms, Experimental/surgery , Ovariectomy , Age Factors , Animals , Animals, Outbred Strains , Female , Life Expectancy , Mammary Neoplasms, Experimental/mortality , Rats , Rats, Sprague-Dawley
2.
J Steroid Biochem Mol Biol ; 92(1-2): 63-71, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15544931

ABSTRACT

The development of resistance to tamoxifen, the most common antiestrogen used in the treatment of breast cancer, is a frequent and severe clinical problem. Tamoxifen-resistant tumors are still capable of responding to other hormonal therapies such as those that downregulate estrogen receptor expression. Mechanisms leading to acquisition of tamoxifen-resistant but hormone-sensitive growth are not completely understood. In tamoxifen-sensitive breast cancer cells, tamoxifen inhibits, whereas estrogen induces, expression of cyclin D1, a key cell cycle regulatory protein. Ectopic expression of cyclin D1 can lead to antiestrogen resistance. Thus, to determine whether cyclin D1 is involved in the growth of tamoxifen-resistant cells, we developed several tamoxifen-resistant variants from MCF-7 cells. These variants grow in the absence of estrogen or in the presence of tamoxifen, but their growth is inhibited by estrogen receptor downregulators. We show here that cyclin D1 expression is maintained at comparable levels in all tamoxifen-resistant variants, whereas pS2, another estrogen-regulated protein, is not. The addition of physiological levels of estrogen further stimulates cyclin D1 expression and proliferation. In contrast, treatment with estrogen receptor downregulators decreases cyclin D1 expression and proliferation. Thus, changes in cyclin D1 expression upon second-line hormonal therapy may predict hormonal sensitivity of tamoxifen-resistant tumors. These studies suggest that estrogen receptor mediates cyclin D1 expression and growth of tamoxifen-resistant tumors.


Subject(s)
Breast Neoplasms/pathology , Cyclin D1/biosynthesis , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/metabolism , Tamoxifen/pharmacology , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cyclin D1/genetics , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...