Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Thromb Haemost ; 14(7): 1410-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27371116

ABSTRACT

UNLABELLED: Essentials ADAMTS-13-deficiency is a cause of thrombotic thrombocytopenic purpura (TTP). Preclinical safety of recombinant human ADAMTS-13 (BAX930) was shown in animal models. Preclinical efficacy of BAX930 was shown in a mouse model of TTP. BAX930 showed advantageous efficacy over fresh frozen plasma, the current standard of care. Click to hear Dr Cataland and Prof. Lämmle present a seminar on Thrombotic Thrombocytopenic Purpura (TTP): new Insights in Pathogenesis and Treatment Modalities. SUMMARY: Background Thrombotic thrombocytopenic purpura (TTP) is a rare blood disorder characterized by microthrombosis in small blood vessels of the body, resulting in a low platelet count. Baxalta has developed a new recombinant ADAMTS-13 (rADAMTS-13) product (BAX930) for on-demand and prophylactic treatment of patients with hereditary TTP (hTTP). Objectives To evaluate the pharmacokinetics, efficacy and safety of BAX930 in different species, by use of an extensive preclinical program. Methods The prophylactic and therapeutic efficacies of BAX930 were tested in a previously established TTP mouse model. Pharmacokinetics were evaluated after single intravenous bolus injection in mice and rats, and after repeated dosing in cynomolgus monkeys. Toxicity was assessed in rats and monkeys, safety pharmacology in monkeys, and local tolerance in rabbits. Results BAX930 was shown to be efficacious, as demonstrated by a stabilized platelet count in ADAMTS-13 knockout mice that were thrombocytopenic when treated. Prophylactic efficacy was dose-dependent and comparable with that achieved by treatment with fresh frozen plasma, the mainstay of hTTP treatment. Therapeutic efficacy was treatment interval-dependent. Safety pharmacology evaluation did not show any deleterious effects of BAX930 on cardiovascular and respiratory functions in monkeys. The compound's pharmacokinetics were similar and dose-proportional in mice, rats, and monkeys. BAX930 was well tolerated in rats, monkeys, and rabbits, even at the highest doses tested. Conclusions These results demonstrate that BAX930 has a favorable preclinical profile, and support the clinical development of rADAMTS-13 for the treatment of hTTP.


Subject(s)
ADAMTS13 Protein/pharmacology , Purpura, Thrombotic Thrombocytopenic/drug therapy , ADAMTS13 Protein/genetics , Animals , Area Under Curve , Blood Platelets/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Macaca fascicularis , Male , Mice , Plasma/metabolism , Platelet Count , Purpura, Thrombotic Thrombocytopenic/blood , Rabbits , Rats , Recombinant Proteins/pharmacology , Species Specificity , Thrombosis/blood , Treatment Outcome
2.
Neurobiol Aging ; 29(9): 1404-11, 2008 Sep.
Article in English | MEDLINE | ID: mdl-17416441

ABSTRACT

The supplementation of creatine (Cr) has a marked neuroprotective effect in mouse models of neurodegenerative diseases. This has been assigned to the known bioenergetic, anti-apoptotic, anti-excitotoxic, and anti-oxidant properties of Cr. As aging and neurodegeneration share pathophysiological pathways, we investigated the effect of oral Cr supplementation on aging in 162 aged C57Bl/6J mice. Outcome variables included "healthy" life span, neurobehavioral phenotyping, as well as morphology, biochemistry, and expression profiling from brain. The median healthy life span of Cr-fed mice was 9% higher than in control mice, and they performed significantly better in neurobehavioral tests. In brains of Cr-treated mice, there was a trend towards a reduction of reactive oxygen species and significantly lower accumulation of the "aging pigment" lipofuscin. Expression profiling showed an upregulation of genes implicated in neuronal growth, neuroprotection, and learning. These data show that Cr improves health and longevity in mice. Cr may be a promising food supplement to promote healthy human aging.


Subject(s)
Behavior, Animal/physiology , Cognition/physiology , Creatine/administration & dosage , Dietary Supplements , Health Status , Survival Rate , Animals , Behavior, Animal/drug effects , Cognition/drug effects , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Survival
SELECTION OF CITATIONS
SEARCH DETAIL