Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786179

ABSTRACT

Relative to several model bacteria, the ethanologenic bacterium Zymomonas mobilis is shown here to have elevated resistance to exogenous antimicrobial peptides (AMPs)- with regard to both peptide bulk concentration in the medium and the numbers of peptide molecules per cell. By monitoring the integration of AMPs in the bacterial cell membrane and observing the resulting effect on membrane energy coupling, it is concluded that the membranotropic effects of the tested AMPs in Z. mobilis and in Escherichia coli are comparable. The advantage of Z. mobilis over E. coli apparently results from its uncoupled mode of energy metabolism that, in contrast to E. coli, does not rely on oxidative phosphorylation, and hence, is less vulnerable to the disruption of its energy-coupling membrane by AMPs. It is concluded that the high resistance to antimicrobial peptides (AMPs) observed in Z. mobilis not only proves crucial for its survival in its natural environment but also offers a promising platform for AMP production and sheds light on potential strategies for novel resistance development in clinical settings.

2.
Antibiotics (Basel) ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978418

ABSTRACT

Skin and soft tissue infections (SSTIs) and acne are among the most common skin conditions in primary care. SSTIs caused by ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) can range in severity, and treating them is becoming increasingly challenging due to the growing number of antibiotic-resistant pathogens. There is also a rise in antibiotic-resistant strains of Cutibacterium acne, which plays a role in the development of acne. Antimicrobial peptides (AMPs) are considered to be a promising solution to the challenges posed by antibiotic resistance. In this study, six new AMPs were rationally designed and compared to five existing peptides. The MIC values against E. coli, P. aeruginosa, K. pneumoniae, E. faecium, S. aureus, and C. acnes were determined, and the peptides were evaluated for cytotoxicity using Balb/c 3T3 cells and dermal fibroblasts, as well as for hemolytic activity. The interaction with bacterial membranes and the effect on TNF-α and IL-10 secretion were also evaluated for selected peptides. Of the tested peptides, RP556 showed high broad-spectrum antibacterial activity without inducing cytotoxicity or hemolysis, and it stimulated the production of IL-10 in LPS-stimulated peripheral blood mononuclear cells. Four of the novel AMPs showed pronounced specificity against C. acnes, with MIC values (0.3-0.5 µg/mL) below the concentrations that were cytotoxic or hemolytic.

3.
BMC Res Notes ; 14(1): 208, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34049566

ABSTRACT

OBJECTIVE: Zymomonas mobilis is an alpha-proteobacterium with a rapid ethanologenic pathway, involving Entner-Doudoroff (E-D) glycolysis, pyruvate decarboxylase (Pdc) and two alcohol dehydrogenase (ADH) isoenzymes. Pyruvate is the end-product of the E-D pathway and the substrate for Pdc. Construction and study of Pdc-deficient strains is of key importance for Z. mobilis metabolic engineering, because the pyruvate node represents the central branching point, most novel pathways divert from ethanol synthesis. In the present work, we examined the aerobic metabolism of a strain with partly inactivated Pdc. RESULTS: Relative to its parent strain the mutant produced more pyruvate. Yet, it also yielded more acetaldehyde, the product of the Pdc reaction and the substrate for ADH, although the bulk ADH activity was similar in both strains, while the Pdc activity in the mutant was reduced by half. Simulations with the kinetic model of Z. mobilis E-D pathway indicated that, for the observed acetaldehyde to ethanol production ratio in the mutant, the ratio between its respiratory NADH oxidase and ADH activities should be significantly higher, than the measured values. Implications of this finding for the directionality of the ADH isoenzyme operation in vivo and interactions between ADH and Pdc are discussed.


Subject(s)
Zymomonas , Alcohol Dehydrogenase/genetics , Metabolic Engineering , Pyruvate Decarboxylase/genetics , Respiration , Zymomonas/genetics
4.
Metabolites ; 10(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32110884

ABSTRACT

Zymomonas mobilis is the most efficient bacterial ethanol producer and its physiology is potentially applicable to industrial-scale bioethanol production. However, compared to other industrially important microorganisms, the Z. mobilis metabolome and adaptation to various nutritional and genetic perturbations have been poorly characterized. For rational metabolic engineering, it is essential to understand how central metabolism and intracellular redox balance are maintained in Z. mobilis under various conditions. In this study, we applied quantitative mass spectrometry-based metabolomics to explore how glucose-fed non-growing Z. mobilis Zm6 cells metabolically adapt to change of oxygen availability. Mutants partially impaired in ethanol synthesis (Zm6 adhB) or oxidative stress response (Zm6 cat) were also examined. Distinct patterns of adaptation of central metabolite pools due to the change in cultivation condition and between the mutants and Zm6 reference strain were observed. Decreased NADH/NAD ratio under aerobic incubation corresponded to higher concentrations of the phosphorylated glycolytic intermediates, in accordance with predictions of the kinetic model of Entner-Doudoroff pathway. The effects on the metabolite pools of aerobic to anaerobic transition were similar in the mutants, yet less pronounced. The present data on metabolic plasticity of non-growing Z. mobilis cells will facilitate the further metabolic engineering of the respective strains and their application as biocatalysts.

5.
Front Microbiol ; 10: 2533, 2019.
Article in English | MEDLINE | ID: mdl-31798541

ABSTRACT

Acetaldehyde is a valuable product of microbial biosynthesis, which can be used by the chemical industry as the entry point for production of various commodity chemicals. In ethanologenic microorganisms, like yeast or the bacterium Zymomonas mobilis, this compound is the immediate metabolic precursor of ethanol. In aerobic cultures of Z. mobilis, it accumulates as a volatile, inhibitory byproduct, due to the withdrawal of reducing equivalents from the alcohol dehydrogenase reaction by respiration. The active respiratory chain of Z. mobilis with its low energy-coupling efficiency is well-suited for regeneration of NAD+ under conditions when acetaldehyde, but not ethanol, is the desired catabolic product. In the present work, we sought to improve the capacity Z. mobilis to synthesize acetaldehyde, based on predictions of a stoichiometric model of its central metabolism developed herein. According to the model analysis, the main objectives in the course of engineering acetaldehyde producer strains were determined to be: (i) reducing ethanol synthesis via reducing the activity of alcohol dehydrogenase (ADH), and (ii) enhancing the respiratory capacity, either by overexpression of the respiratory NADH dehydrogenase (NDH), or by mutation of other components of respiratory metabolism. Several mutants with elevated respiration rate, decreased alcohol dehydrogenase activity, or a combination of both, were obtained. They were extensively characterized by determining their growth rates, product yields, oxygen consumption rates, ADH, and NDH activities, transcription levels of key catabolic genes, as well as concentrations of central metabolites under aerobic culture conditions. Two mutant strains were selected, with acetaldehyde yield close to 70% of the theoretical maximum value, almost twice the previously published yield for Z. mobilis. These strains can serve as a basis for further development of industrial acetaldehyde producers.

6.
Article in English | MEDLINE | ID: mdl-31781557

ABSTRACT

Respiratory chain plays a pivotal role in the energy and redox balance of aerobic bacteria. By engineering respiration, it is possible to alter the efficiency of energy generation and intracellular redox state, and thus affect the key bioprocess parameters: cell yield, productivity and stress resistance. Here we summarize the current metabolic engineering and synthetic biology approaches to bacterial respiratory metabolism, with a special focus on the respiratory chain of the ethanologenic bacterium Zymomonas mobilis. Electron transport in Z. mobilis can serve as a model system of bacterial respiration with low oxidative phosphorylation efficiency. Its application for redox balancing and relevance for improvement of stress tolerance are analyzed.

7.
Microbiologyopen ; 8(8): e00809, 2019 08.
Article in English | MEDLINE | ID: mdl-30770675

ABSTRACT

Acetaldehyde, a valuable commodity chemical, is a volatile inhibitory byproduct of aerobic fermentation in Zymomonas mobilis and in several other microorganisms. Attempting to improve acetaldehyde production by minimizing its contact with the cell interior and facilitating its removal from the culture, we engineered a Z. mobilis strain with acetaldehyde synthesis reaction localized in periplasm. For that, the pyruvate decarboxylase (PDC) was transferred from the cell interior to the periplasmic compartment. This was achieved by the construction of a Z. mobilis Zm6 PDC-deficient mutant, fusion of PDC with the periplasmic signal sequence of Z. mobilis gluconolactonase, and the following expression of this fusion protein in the PDC-deficient mutant. The obtained recombinant strain PeriAc, with most of its PDC localized in periplasm, showed a twofold higher acetaldehyde yield, than the parent strain, and will be used for further improvement by directed evolution.


Subject(s)
Acetaldehyde/metabolism , Periplasm/enzymology , Periplasm/metabolism , Pyruvate Decarboxylase/metabolism , Recombinant Fusion Proteins/metabolism , Zymomonas/enzymology , Zymomonas/metabolism , Aerobiosis , Fermentation , Metabolic Engineering , Protein Transport , Pyruvate Decarboxylase/genetics , Recombinant Fusion Proteins/genetics , Zymomonas/genetics
8.
Metab Eng Commun ; 7: e00081, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30591903

ABSTRACT

Ability to ferment in the presence of oxygen increases the robustness of bioprocesses and opens opportunity for novel industrial setups. The ethanologenic bacterium Zymomonas mobilis performs rapid and efficient anaerobic ethanol fermentation, yet its respiratory NADH dehydrogenase (Ndh)-deficient strain (ndh-) is known to produce ethanol with high yield also under oxic conditions. Compared to the wild type, it has a lower rate of oxygen consumption, and an increased expression of the respiratory lactate dehydrogenase (Ldh). Here we present a quantitative study of the product spectrum and carbon balance for aerobically growing ndh-. Ldh-deficient and Ldh-overexpressing ndh- strains were constructed and used to examine the putative role of the respiratory lactate bypass for aerobic growth and production. We show that aerobically growing ndh- strains perform fermentative metabolism with a near-maximum ethanol yield, irrespective of their Ldh expression background. Yet, Ldh activity strongly affects the aerobic product spectrum in glucose-consuming non-growing cells. Also, Ldh-deficiency hampers growth at elevated temperature (42 °C) and delays the restart of growth after 10-15 h of aerobic starvation.

9.
PLoS One ; 11(4): e0153866, 2016.
Article in English | MEDLINE | ID: mdl-27100889

ABSTRACT

Performing oxidative phosphorylation is the primary role of respiratory chain both in bacteria and eukaryotes. Yet, the branched respiratory chains of prokaryotes contain alternative, low energy-coupling electron pathways, which serve for functions other than oxidative ATP generation (like those of respiratory protection, adaptation to low-oxygen media, redox balancing, etc.), some of which are still poorly understood. We here demonstrate that withdrawal of reducing equivalents by the energetically uncoupled respiratory chain of the bacterium Zymomonas mobilis accelerates its fermentative catabolism, increasing the glucose consumption rate. This is in contrast to what has been observed in other respiring bacteria and yeast. This effect takes place after air is introduced to glucose-consuming anaerobic cell suspension, and can be simulated using a kinetic model of the Entner-Doudoroff pathway in combination with a simple net reaction of NADH oxidation that does not involve oxidative phosphorylation. Although aeration hampers batch growth of respiring Z. mobilis culture due to accumulation of toxic byproducts, nevertheless under non-growing conditions respiration is shown to confer an adaptive advantage for the wild type over the non-respiring Ndh knock-out mutant. If cells get occasional access to limited amount of glucose for short periods of time, the elevated glucose uptake rate selectively improves survival of the respiring Z. mobilis phenotype.


Subject(s)
Electron Transport , Fermentation , Glucose/metabolism , Zymomonas/metabolism , Aerobiosis , Kinetics , NAD/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Zymomonas/growth & development
10.
Microbiology (Reading) ; 160(Pt 9): 2045-2052, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24980645

ABSTRACT

The genome of the ethanol-producing bacterium Zymomonas mobilis encodes a bd-type terminal oxidase, cytochrome bc1 complex and several c-type cytochromes, yet lacks sequences homologous to any of the known bacterial cytochrome c oxidase genes. Recently, it was suggested that a putative respiratory cytochrome c peroxidase, receiving electrons from the cytochrome bc1 complex via cytochrome c552, might function as a peroxidase and/or an alternative oxidase. The present study was designed to test this hypothesis, by construction of a cytochrome c peroxidase mutant (Zm6-perC), and comparison of its properties with those of a mutant defective in the cytochrome b subunit of the bc1 complex (Zm6-cytB). Disruption of the cytochrome c peroxidase gene (ZZ60192) caused a decrease of the membrane NADH peroxidase activity, impaired the resistance of growing culture to exogenous hydrogen peroxide and hampered aerobic growth. However, this mutation did not affect the activity or oxygen affinity of the respiratory chain, or the kinetics of cytochrome d reduction. Furthermore, the peroxide resistance and membrane NADH peroxidase activity of strain Zm6-cytB had not decreased, but both the oxygen affinity of electron transport and the kinetics of cytochrome d reduction were affected. It is therefore concluded that the cytochrome c peroxidase does not terminate the cytochrome bc1 branch of Z. mobilis, and that it is functioning as a quinol peroxidase.


Subject(s)
Cytochrome-c Peroxidase/metabolism , Electron Transport/genetics , Oxygen/metabolism , Zymomonas/genetics , Cytochrome-c Peroxidase/genetics , Gene Deletion , Oxidoreductases/metabolism
11.
J Basic Microbiol ; 54(10): 1090-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24599704

ABSTRACT

To investigate the mechanisms of Zymomonas mobilis uncoupled aerobic metabolism, growth properties of the wild-type strain Zm6 were compared to those of its respiratory mutants cytB and cydB, and the effects of the ATPase inhibitor DCCD on growth and intracellular ATP concentration were studied. The effects of the ATPase inhibitor DCCD on growth and intracellular ATP concentration strongly indicated that the apparent lack of oxidative phosphorylation in aerobically growing Z. mobilis culture might be caused by the ATP hydrolyzing activity of the H(+) -dependent ATPase in all analyzed strains. Aerobic growth yields of the mutants, and their capacity of oxidative ATP synthesis with ethanol were closely similar, not supporting presence of one major, yet energetically inefficient electron transport branch causing the observed poor aerobic growth and lack of oxidative phosphorylation in Z. mobilis. We suggest that rapidly operating Entner-Doudoroff pathway generates too high phosphorylation potential for the weakly coupled respiratory system to shift the H(+) -dependent ATPase toward ATP synthesis.


Subject(s)
Proton-Translocating ATPases/metabolism , Zymomonas/metabolism , Adenosine Triphosphate/biosynthesis , Aerobiosis , Dicyclohexylcarbodiimide/pharmacology , Glycolysis/drug effects , Metabolic Networks and Pathways , Mutation , Oxidation-Reduction , Oxidative Phosphorylation , Zymomonas/genetics , Zymomonas/growth & development
12.
Front Microbiol ; 5: 42, 2014.
Article in English | MEDLINE | ID: mdl-24550906

ABSTRACT

Mathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.

13.
Microbiology (Reading) ; 159(Pt 12): 2674-2689, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24085837

ABSTRACT

Zymomonas mobilis, an ethanol-producing bacterium, possesses the Entner-Doudoroff (E-D) pathway, pyruvate decarboxylase and two alcohol dehydrogenase isoenzymes for the fermentative production of ethanol and carbon dioxide from glucose. Using available kinetic parameters, we have developed a kinetic model that incorporates the enzymic reactions of the E-D pathway, both alcohol dehydrogenases, transport reactions and reactions related to ATP metabolism. After optimizing the reaction parameters within likely physiological limits, the resulting kinetic model was capable of simulating glycolysis in vivo and in cell-free extracts with good agreement with the fluxes and steady-state intermediate concentrations reported in previous experimental studies. In addition, the model is shown to be consistent with experimental results for the coupled response of ATP concentration and glycolytic flux to ATPase inhibition. Metabolic control analysis of the model revealed that the majority of flux control resides not inside, but outside the E-D pathway itself, predominantly in ATP consumption, demonstrating why past attempts to increase the glycolytic flux through overexpression of glycolytic enzymes have been unsuccessful. Co-response analysis indicates how homeostasis of ATP concentrations starts to deteriorate markedly at the highest glycolytic rates. This kinetic model has potential for application in Z. mobilis metabolic engineering and, since there are currently no E-D pathway models available in public databases, it can serve as a basis for the development of models for other micro-organisms possessing this type of glycolytic pathway.


Subject(s)
Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways/genetics , Zymomonas/genetics , Zymomonas/metabolism , Adenosine Triphosphate/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Carbon Dioxide/metabolism , Computer Simulation , Ethanol/metabolism , Glucose/metabolism , Models, Biological , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Zymomonas/enzymology
14.
ScientificWorldJournal ; 2012: 742610, 2012.
Article in English | MEDLINE | ID: mdl-22629192

ABSTRACT

Mutant strain of the facultatively anaerobic, ethanol-producing bacterium Zymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II), showed impaired homeostasis of the intracellular NAD(P)H during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.


Subject(s)
Alcohol Dehydrogenase/deficiency , Homeostasis/physiology , Hydrogen Peroxide/metabolism , NADP/metabolism , Oxygen Consumption/physiology , Oxygen/metabolism , Zymomonas/physiology , Oxidation-Reduction , Species Specificity , Zymomonas/classification
15.
Arch Microbiol ; 194(6): 461-71, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22228443

ABSTRACT

The ethanol-producing bacterium Zymomonas mobilis is of great interest from a bioenergetic perspective because, although it has a very high respiratory capacity, the respiratory system does not appear to be primarily required for energy conservation. To investigate the regulation of respiratory genes and function of electron transport branches in Z. mobilis, several mutants of the common wild-type strain Zm6 (ATCC 29191) were constructed and analyzed. Mutant strains with a chloramphenicol-resistance determinant inserted in the genes encoding the cytochrome b subunit of the bc (1) complex (Zm6-cytB), subunit II of the cytochrome bd terminal oxidase (Zm6-cydB), and in the catalase gene (Zm6-kat) were constructed. The cytB and cydB mutants had low respiration capacity when cultivated anaerobically. Zm6-cydB lacked the cytochrome d absorbance at 630 nm, while Zm6-cytB had very low spectral signals of all cytochromes and low catalase activity. However, under aerobic growth conditions, the respiration capacity of the mutant cells was comparable to that of the parent strain. The catalase mutation did not affect aerobic growth, but rendered cells sensitive to hydrogen peroxide. Cytochrome c peroxidase activity could not be detected. An upregulation of several thiol-dependent oxidative stress-protective systems was observed in an aerobically growing ndh mutant deficient in type II NADH dehydrogenase (Zm6-ndh). It is concluded that the electron transport chain in Z. mobilis contains at least two electron pathways to oxygen and that one of its functions might be to prevent endogenous oxidative stress.


Subject(s)
Cytochrome-c Peroxidase/metabolism , Electron Transport Complex III/metabolism , Oxidative Stress , Zymomonas/metabolism , Catalase/genetics , Catalase/metabolism , Cytochrome-c Peroxidase/genetics , Electron Transport , Electron Transport Complex III/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Hydrogen Peroxide/metabolism , Mutagenesis, Insertional , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Oxidation-Reduction , Oxygen/metabolism , Zymomonas/genetics , Zymomonas/growth & development
16.
Microbiology (Reading) ; 154(Pt 3): 989-994, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18310045

ABSTRACT

The respiratory chain of the ethanol-producing bacterium Zymomonas mobilis is able to oxidize both species of nicotinamide cofactors, NADH and NADPH. A mutant strain with a chloramphenicol-resistance determinant inserted in ndh (encoding an NADH : CoQ oxidoreductase of type II) lacked the membrane NADH and NADPH oxidase activities, while its respiratory D-lactate oxidase activity was increased. Cells of the mutant strain showed a very low respiration rate with glucose and no respiration with ethanol. The aerobic growth rate of the mutant was elevated; exponential growth persisted longer, resulting in higher biomass densities. For the parent strain a similar effect of aerobic growth stimulation was achieved previously in the presence of submillimolar cyanide concentrations. It is concluded (i) that the respiratory chain of Z. mobilis contains only one functional NAD(P)H dehydrogenase, product of the ndh gene, and (ii) that inhibition of respiration, whether resulting from a mutation or from inhibitor action, stimulates Z. mobilis aerobic growth due to redirection of the NADH flux from respiration to ethanol synthesis, thus minimizing accumulation of toxic intermediates by contributing to the reduction of acetaldehyde to ethanol.


Subject(s)
Bacterial Proteins/genetics , Gene Deletion , NADH Dehydrogenase/genetics , Zymomonas/enzymology , Acetaldehyde/metabolism , Aerobiosis/physiology , Bacterial Proteins/metabolism , Biomass , Cell Membrane/enzymology , Ethanol/metabolism , Glucose/metabolism , Mixed Function Oxygenases/metabolism , Mutagenesis, Insertional , NAD/metabolism , NADH Dehydrogenase/metabolism , NADP/metabolism , Oxidation-Reduction , Oxygen/metabolism , Zymomonas/growth & development , Zymomonas/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...