Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109960, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885749

ABSTRACT

Pesticides used in rice cultivation can cause negative health effects to non-target organisms representative of natural biodiversity. In this context, the present study aimed to investigate the occurrence of pesticides in surface waters from a river that flows in the middle of a rice farming-dominated area. We were also interested in evaluate biochemical and histological effects caused by exposure (16 d) to the lower and higher concentrations of the main found herbicide (bentazone, BTZ), insecticide (chlorantraniliprole, CTP) and fungicide (tebuconazole, TBZ), isolated or mixed, in Boana faber tadpoles. No significant differences were observed in the development of the animals. Tadpoles exposed to the herbicide BTZ showed higher hepatic levels of malondialdehyde (MDA). In animals exposed to CTP, MDA levels were lower than controls. Animals exposed to the fungicide TBZ showed higher hepatic activity of glutathione S-transferase and carboxylesterase (CbE), as well as higher levels of carbonyl proteins and MDA. Animals exposed to Mix showed higher activity in CbE and glucose-6-phosphate dehydrogenase activity in the liver, as well as higher levels of MDA. In the brain and muscle of tadpoles exposed to Mix, acetylcholinesterase activity was higher. Histological changes were also observed in pesticide-exposed animals, such as increased occurrence of melanomacrophages, inflammatory infiltrates and congestion. Our data evidences the contamination of natural aquatic environments by rice pesticides, and the adverse effects of main ones in B. faber tadpoles, which suggests the contribution of pesticides derived from rice cultivation to the degradation of local biodiversity health.

2.
Aquat Toxicol ; 268: 106869, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387247

ABSTRACT

Synthetic glucocorticoids are often found in surface waters and can cause harmful effects to aquatic organisms such as amphibians. In this work we evaluated the effects of the drugs prednisone (PD) and prednisolone (PL) on developmental, molecular, blood, biochemical and histological markers. Aquarana catesbeianus tadpoles were exposed for 16 days to environmentally relevant concentrations of 0, 0.1, 1 and 10 µg/L of both drugs. PD increased the transcript levels of the enzyme deiodinase III (Dio3), the hormones cortisol and T4 and delayed development. Changes in the thyroid gland occurred after tadpoles were exposed to both drugs, with a reduction in the diameter and number of follicles and an increase/or decrease in area. Also, both drugs caused a decrease in lymphocytes (L) and an increase in neutrophils (N), thrombocytes, the N:L ratio and lobed and notched erythrocytes. Increased activity of the enzymes superoxide dismutase, glutathione S-transferase and glucose 6-phosphate dehydrogenase was observed after exposure to PD. Furthermore, both drugs caused an increase in the activity of the enzymes catalase and glutathione peroxidase. However, only PD caused oxidative stress in exposed tadpoles, evidenced by increased levels of malondialdehyde and carbonyl proteins. Both drugs caused an increase in inflammatory infiltrates, blood cells and melanomacrophages in the liver. Our results indicate that PD was more toxic than PL, affecting development and causing oxidative stress.


Subject(s)
Prednisolone , Water Pollutants, Chemical , Animals , Larva , Prednisone/metabolism , Prednisone/pharmacology , Prednisolone/toxicity , Prednisolone/metabolism , Water Pollutants, Chemical/toxicity , Oxidative Stress
3.
Article in English | MEDLINE | ID: mdl-38218566

ABSTRACT

Amphibians are considered bioindicators of the environment due to their high sensitivity and involvement in terrestrial and aquatic ecosystems. In the last two decades, 2,4-D has been one of the most widely used herbicides in Brazil and around the world, as its use has been authorized for genetically modified crops and therefore has been detected in surface and groundwater. Against this background, the aim of this work was to investigate the effects of environmentally relevant concentrations of 2,4-D-based herbicides on survival, malformations, swimming activity, presence of micronuclei and erythrocyte nuclear abnormalities in Physalaemus cuvieri tadpoles. The amphibians were exposed to six concentrations of 2,4-D-based herbicides: 0.0, 4.0, 30.0, 52.5, 75.0, and 100 µg L-1, for 168 h. At concentrations higher than 52.5 µg L-1, significantly increased mortality was observed from 24 h after exposure. At the highest concentration (100 µg L-1), the occurrence of mouth and intestinal malformations was also observed. The occurrence of erythrocyte nuclear abnormalities at concentrations of 30.0, 52.5, 75.0 and 100 µg L-1 and the presence of micronuclei at concentrations of 52.5, 75.0, and 100 µg L-1 were also recorded. These effects of 2,4-D in P. cuvieri indicate that the ecological risk observed at concentrations above 10.35 µg L-1 2,4-D may represent a threat to the health and survival of this species, i.e., exposure to 2,4-D at concentrations already detected in surface waters in the species' range is toxic to P. cuvieri.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Herbicides/toxicity , Ecosystem , Larva , Crops, Agricultural , Plants, Genetically Modified , Anura , 2,4-Dichlorophenoxyacetic Acid , Water Pollutants, Chemical/toxicity
4.
Mar Environ Res ; 194: 106309, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38169221

ABSTRACT

This study aimed to carry out a general diagnosis of the contamination of the coastal marine environment of the Santa Catarina state (SC, Brazil) by different classes of environmental pollutants, as well as to evaluate possible adverse effects of the contaminants on biochemical biomarkers of oysters, Crassostrea gasar and Crassostrea rhizophorae. 107 chemicals were evaluated in water, sediment and oyster samples from nine sites along the coastline of SC. We also examined various biochemical biomarkers in the oysters' gills and digestive glands to assess potential effects of contaminants. In general, the northern and central regions of the littoral of SC presented higher occurrences and magnitudes of contaminants than the southern region, which is probably related to higher urbanization of center and northern areas of the littoral. The biomarker analysis in the oysters reflected these contamination patterns, with more significant alterations observed in regions with higher levels of pollutants. Our results may serve as a first baseline for future and more extensive monitoring actions and follow-up of the degree of contamination in the state, allowing for inspection actions and management of areas most affected by marine pollutants.


Subject(s)
Crassostrea , Environmental Pollutants , Water Pollutants, Chemical , Animals , Brazil , Biomarkers , Gills , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
5.
Environ Pollut ; 341: 122900, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37952920

ABSTRACT

Tebuconazole (TBZ) and azoxystrobin (AZX) are fungicides frequently used in rice cultivation. Despite protecting crops against fungal diseases, these compounds can contaminate the natural environments close to the crops, exerting negative effects on non-target organisms, the present study aimed to characterize the contamination by fungicides of a river that flows in an area dominated by rice cultivation in the north of the state of Santa Catarina, SC, Brazil. Concentrations of TBZ and AZX found in the field were used to evaluate their negative effects on development, biochemical biomarkers and histopatology of the liver of a native tadpole species, the hammerfrog (Boana faber). Tadpoles were exposed for 16 days to the lowest (1.20 µg/L) and highest (2.60 µg/L) concentration of TBZ, lowest (0.70 µg/L) and highest (1.60 µg/L) concentration of AZX, and the mix of both fungicides at lowest and highest concentration of each found in field analyses. Exposure to the lower TBZ concentration and both concentrations of the Mix accelerated the development of tadpoles. AZX caused an increase in the activities of glutathione S-transferase (GST), carboxylesterase (CbE) and glucose-6-phosphate dehydrogenase (G6PDH) in the liver, an increase in the levels of protein carbonyls (PC) in the liver and an increase in the activity of acetylcholinesterase (AChE) in muscle of tadpoles. TBZ, on the other hand, generated an increase in GST, G6PDH, PC and histopathological severity scores in liver and in muscle AChE activity. The effects were more intense in the groups exposed to the Mix of contaminants. No treatment altered brain AChE. The data showed that the fungicides from in rice cultivation found in natural aquatic environments around the crops pose risks to the health of the animals, compromising their metabolism and development.


Subject(s)
Fungicides, Industrial , Oryza , Water Pollutants, Chemical , Animals , Fungicides, Industrial/toxicity , Acetylcholinesterase , Crops, Agricultural , Glutathione Transferase , Water Pollutants, Chemical/toxicity , Larva
6.
Sci Rep ; 13(1): 17826, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857789

ABSTRACT

This study evaluated the lethal, sublethal, and toxic of a commercial formulation of cypermethrin in the anuran species Physalaemus gracilis. In the acute test, concentrations of 100-800 µg L-1 were tested over 96 h. In the chronic test, cypermethrin concentrations recorded in nature (1, 3, 6, and 20 µg L-1) were tested for mortality and then used for the micronucleus test and erythrocyte nuclear abnormalities over a 7-days period. The LC50 determined for P. gracilis for the commercial cypermethrin formulation was 273.41 µg L-1. In the chronic test, a mortality of more than 50% was observed at the highest concentration (20 µg L-1), as it caused half of the tadpoles studied to die. The micronucleus test showed significant results at concentrations of 6 and 20 µg L-1 and recorded the presence of several nuclear abnormalities, indicating the genotoxic potential of the commercial cypermethrin formulation for P. gracilis. Cypermethrin presented a high risk to the species, indicating that it has the potential to cause several problems in the short and long term and to affect the dynamics of this ecosystem. Therefore, it can be concluded that the commercial formulation of cypermethrin had toxicological effects on P. gracilis.


Subject(s)
Insecticides , Pyrethrins , Water Pollutants, Chemical , Animals , Larva , Ecosystem , Water Pollutants, Chemical/toxicity , Pyrethrins/toxicity , Anura , Insecticides/toxicity
7.
Chemosphere ; 307(Pt 4): 136215, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36041517

ABSTRACT

In this study the effects of environmentally realistic concentrations of the antibiotics sulfamethoxazole (SMX) and oxytetracyclyne (OTC) on Lithobates catesbeianus tadpoles were evaluated, through the analyzes of the frequencies of micronucleus and nuclear abnormalities in erythrocytes, alterations in leucocytes, liver histopathology, and changes in hepatic esterase activities and oxidative stress biomarkers. The animals were exposed for 16 days at concentrations of 0 (control), 20, 90 and 460 ng L-1. No significant difference was found in the frequencies of micronucleus and nuclear abnormalities. The two highest concentrations of SMX and all concentrations of OTC caused a significant increase in the number of lymphocytes. A significant decrease in the number of neutrophils compared to the control group was observed for all concentrations tested of both antibiotics. Also, decrease in the activity of glutathione S-transferase and high histopathological severity scores, indicating liver damage, were found in tadpoles exposed to the two highest concentrations of SMX and all concentrations of OTC. The main changes in the liver histopathology were the presence of inflammatory infiltrate, melanomacrophages, vascular congestion, blood cells and eosinophils. Esterase activities were unchanged. Indeed, the two highest concentrations of OTC caused a reduction in the activities of superoxide dismutase and glucose 6-phosphate dehydrogenase, while the highest concentration inhibited the activity of glutathione peroxidase and increased protein carbonyl levels. These results evidences that environmentally realistic concentrations of SMX and OTC in aquatic environments are capable to significantly disrupt tadpoles' physiology, possibly affecting negatively their survival rate in natural environments.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/pharmacology , Biomarkers/metabolism , Esterases/metabolism , Glucose/metabolism , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Larva , Liver/metabolism , Oxytetracycline/pharmacology , Phosphates/metabolism , Rana catesbeiana , Sulfamethoxazole/metabolism , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/metabolism
8.
Sci Rep ; 12(1): 11926, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831394

ABSTRACT

Imidacloprid is a neonicotinoid insecticide used to control agricultural pests around the world. This pesticide can have adverse effects on non-target organisms, especially in aquatic environments. The present study evaluated the toxicity of an imidacloprid-based insecticide in amphibians, using Leptodactylus luctator and Physalaemus cuvieri tadpoles as study models. Spawning of both species were collected within less than 24 h of oviposition from a non-agricultural land at Erechim, Rio Grande do Sul state, Brazil. Survival, swimming activity, body size, morphological malformations, and genotoxic parameters were analyzed at laboratory conditions. A short-term assay was conducted over 168 h (7 days) with five different concentrations of imidacloprid (3-300 µg L-1) being tested. The insecticide did not affect survival, although the tadpoles of both species presented reduced body size, malformed oral and intestine structures, and micronuclei and other erythrocyte nuclear abnormalities following exposure to this imidacloprid-based compound. Exposure also affected swimming activity in L. luctator, which reflected the greater sensitivity of L. luctator to imidacloprid in comparison with P. cuvieri. The swimming activity, body size, and malformations observed in L. luctator and the morphological malformations found in P. cuvieri indicated that even the lowest tested concentration of the insecticide were harmful to amphibians. At concentrations of over 3 µg L-1, P. cuvieri presents a smaller body size, and both species are affected by genotoxic cell damage. This demonstrates that imidacloprid is potentially toxic for the two study species at environmentally relevant concentrations.


Subject(s)
Insecticides , Water Pollutants, Chemical , Animals , Anura , DNA Damage , Insecticides/toxicity , Larva , Neonicotinoids/toxicity , Nitro Compounds , Water Pollutants, Chemical/toxicity
9.
Environ Toxicol Pharmacol ; 85: 103637, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33753236

ABSTRACT

Pesticide contamination is an important factor in the global decline of amphibians. The herbicides glyphosate and 2,4-D are the most applied worldwide. These herbicides are often found in surface waters close to agricultural areas. This study aims at evaluating the chronic effects caused by glyphosate + 2,4-D mixture in Boana faber and Leptodactylus latrans tadpoles. The combined solution of the glyphosate and 2,4-D, in 5 different concentrations, was applied for 168 h. Herbicide mixtures did not affect the survival of the exposed tadpoles but growth and swimming activity were altered; besides causing several damages in the mouth and intestine. The erythrocytes showed micronuclei and other nuclear abnormalities. There is an ecological risk in the exposure of tadpoles of B. faber and L. latrans from the mixture of glyphosate + 2,4-D. Therefore, the approach used in this study provides important information on how commonly used pesticides can affect non-target organisms.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Glycine/analogs & derivatives , Herbicides/toxicity , Mutagens/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anura/growth & development , Anura/physiology , DNA Damage , Erythrocytes, Abnormal , Glycine/toxicity , Larva/drug effects , Larva/growth & development , Larva/physiology , Micronuclei, Chromosome-Defective/chemically induced , Risk Assessment , Swimming , Glyphosate
10.
Environ Toxicol Pharmacol ; 81: 103516, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33080355

ABSTRACT

Genotoxicity studies have revealed that pesticides bind to genetic material in non-target vertebrates, thereby impairing the genetic integrity of these animals. The main objective of this study was to determine the genotoxic damage in erythrocytes of two native South American amphibian Physalaemus cuvieri and Physalaemus gracilis, both species exposed to a glyphosate-based herbicide. We evaluated the presence of micronuclei (MN) and erythrocyte nuclear abnormalities (ENA) as biomarkers for potential genotoxic compounds. Tadpoles were exposed to doses permitted by Brazilian legislation and concentrations found naturally in Brazilian and Argentinian waters (500, 700 and 1000 µg/L). Glyphosate-based herbicide caused micronuclei formation and several types of erythrocyte nuclear abnormalities in both Physalaemus species. The total frequency of MN and ENA demonstrated the occurrence of cell damage at all tested concentrations. Glyphosate herbicide can be considered a genotoxic that may impact the genetic integrity of native populations of P. cuvieri and P. gracilis.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Mutagens/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anura , Erythrocytes/drug effects , Glycine/toxicity , Larva , Micronucleus Tests , Glyphosate
11.
Environ Sci Pollut Res Int ; 27(18): 22619-22630, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32319061

ABSTRACT

Herbicides are the most common agrochemicals used in crops. Among them, glyphosate is the most widely applied in the world. Herbicides, especially organophosphates, have been shown to be hazardous to non-target species, including amphibians. The present study evaluated the acute and chronic effects of glyphosate-based herbicide (GBH), Roundup original® DI on tadpoles from two South American native species, Physalaemus cuvieri and P. gracilis. Spawnings were collected in the natural environment and maintained in the laboratory under controlled conditions. Acute and chronic toxicology trials began at stage 25 of Gosner (Herpetological 16:183-190, 1960). In an acute toxicity assay, seven GBH concentrations between 100 and 4500 µg a.e./L were tested over 96 h. For the chronic trials, tadpoles were subjected to both doses allowed by Brazilian legislation and to concentrations found in natural environment waters from Brazil and Argentina, between 65 and 1000 µg a.e/L over 14 days. Glyphosate had lethal effects on both studied species. Tadpoles showed shorter lengths and lower masses; that is, those that survived suffered chronic effects on growth and weight. The GBH maximum acceptable toxicant concentration for mortality and malformation was lower than the allowed level for Brazilian waters. The GBH tested in this study presented a high environmental and acute risk for the two studied species.


Subject(s)
Anura , Herbicides , Animals , Argentina , Brazil , Glycine/analogs & derivatives , Larva , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...