Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38967626

ABSTRACT

Tailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise control and tuning of the defect size, position, and density remain challenging; moreover, due to their characteristic labyrinthine morphology, conventional characterization techniques and widely accepted quality indicators fail or need to be reformulated. This study primarily focuses on examining the impact of boron heterodoping and argon plasma treatment on CNW structures, uncovering complex interplays between specific defect-induced three-dimensional nanostructures and electrochemical performance. Moreover, the study introduces the use of defect-rich CNWs as a label-free electrode for directly oxidizing glyphosate (GLY), a common herbicide, and its metabolites (sarcosine and aminomethylphosphonic acid) for the first time. Crucially, we discovered that the presence of specific boron bonds (BC and BN), coupled with the absence of Lewis-base functional groups such as pyridinic-N, is essential for the oxidation of these analytes. Notably, the D+D* second-order combinational Raman modes at ≈2570 cm-1 emerged as a reliable indicator of the analytes' affinity. Contrary to expectations, the electrochemically active surface area and the presence of oxygen-containing functional groups played a secondary role. Argon-plasma post-treatment was found to adversely affect both the morphology and surface chemistry of CNWs, leading to an increase in sp3-hybridized carbon, the introduction of oxygen, and alterations in the types of nitrogen functional groups. Simulations support that certain defects are functional for GLY rather than AMPA. Sarcosine oxidation is the least affected by defect type.

2.
Molecules ; 29(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611706

ABSTRACT

In this work, UV-Vis spectrophotometry, High Resolution Scanning Transmission Electron Microscopes and selected experimental conditions were used to screen the colloidal system. The obtained results complement the established knowledge regarding the mechanism of nanoparticle formation. The process of gold nanoparticles formation involves a two-step reduction of Au ions to Au(0); atom association and metastable cluster formation; autocatalytic cluster growth; ultra-small particle formation (1-2 nm, in diameter); particle growth and larger particles formation; and further autocatalytic crystal growth (D > 100 nm). As a reductant of Au(III) ions, a cinnamon extract was used. It was confirmed that eugenol as one of the cinnamon extract compounds is responsible for fast Au(III) ion reduction, whereas cinnamaldehyde acts as a gold-particle stabilizer. Spectrophotometry studies were carried out to track kinetic traces of gold nanoparticle (D > 2 nm) formation in the colloidal solution. Using the Watzky-Finke model, the rate constants of nucleation and autocatalytic growth were determined. Moreover, the values of energy, enthalpy and entropy of activation for stages related to the process of nanoparticle formation (Index 1 relates to nucleation, and Index 2 relates to the growth) were determined and found to be E1 = 70.6 kJ, E2 = 19.6 kJ, ΔH1 = 67.9 kJ/mol, ΔH2 = 17 kJ/mol, ΔS1 = -76.2 J/(K·mol), ΔS2 = -204.2 J/(K·mol), respectively. In this work the limitation of each technique (spectrophotometry vs. HRSTEM) as a complex tool to understand the dynamic of the colloidal system was discussed.

3.
Small ; 20(10): e2304152, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37888807

ABSTRACT

The magnetic coupling of a set of SrFe12 O19 /CoFe2 O4 nanocomposites is investigated. Advanced electron microscopy evidences the structural coherence and texture at the interfaces of the nanostructures. The fraction of the lower anisotropy phase (CoFe2 O4 ) is tuned to assess the limits that define magnetically exchange-coupled interfaces by performing magnetic remanence, first-order reversal curves (FORCs), and relaxation measurements. By combining these magnetometry techniques and the structural and morphological information from X-ray diffraction, electron microscopy, and Mössbauer spectrometry, the exchange intergranular interaction is evidenced, and the critical thickness within which coupled interfaces have a uniform reversal unraveled.

4.
Materials (Basel) ; 16(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36676395

ABSTRACT

This publication presents the synthesis of core-shell nanoparticles, where the core was Ni, and the shell was a Ag-Ni nano alloy. The synthesis was based on the reduction of Ni and Ag ions with sodium borohydride in the presence of trisodium citrate as a stabilizer. In order to determine the phase composition of the obtained nanoparticles, an XRD study was performed, and in order to identify the oxidation states of the nanoparticle components, an XPS spectroscopic study was performed. The composition and shape of the particles were determined using the HR-TEM EDS test. The obtained nanoparticles had a size of 11 nm. The research on catalytic properties was carried out in the model methylene blue reduction system. The investigation of the catalytic activity of colloids was carried out with the use of UV-Vis spectrophotometry. The Ag-Ni alloy was about ten times more active than were pure silver nanoparticles of a similar size.

5.
Molecules ; 27(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36557861

ABSTRACT

Carbon dots (CDs) are carbon-based zero-dimensional nanomaterials that can be prepared from a number of organic precursors. In this research, they are prepared using fat-free UHT cow milk through the hydrothermal method. FTIR analysis shows C=O and C-H bond presence, as well as nitrogen-based bond like C-N, C=N and -NH2 presence in CDs, while the absorption spectra show the absorption band at 280 ± 3 nm. Next, the Biuret test was performed, with the results showing no presence of unreacted proteins in CDs. It can be said that all proteins are converted in CDs. Photo luminance spectra shows the emission of CDs is 420 nm and a toxicity study of CDs was performed. The Presto Blue method was used to test the toxicity of CDs for murine hippocampal cells. CDs at a concentration of 4 mg/mL were hazardous independent of synthesis time, while the toxicity was higher for lower synthesis times of 1 and 2 h. When the concentration is reduced in 1 and 2 h synthesized CDs, the cytotoxic effect also decreases significantly, ensuring a survival rate of 60-80%. However, when the synthesis time of CDs is increased, the cytotoxic effect decreases to a lesser extent. The CDs with the highest synthesis time of 8 h do not show a cytotoxic effect above 60%. The cytotoxicity study shows that CDs may have a concentration and time-dependent cytotoxic effect, reducing the number of viable cells by 40%.


Subject(s)
Quantum Dots , Animals , Mice , Quantum Dots/toxicity , Quantum Dots/chemistry , Milk , Carbon/toxicity , Carbon/chemistry , Fluorescent Dyes/chemistry
7.
ACS Appl Mater Interfaces ; 14(10): 12766-12776, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35254812

ABSTRACT

Nowadays, a wide number of applications based on magnetic materials rely on the properties arising at the interface between different layers in complex heterostructures engineered at the nanoscale. In ferromagnetic/heavy metal multilayers, such as the [Co/Pt]N and [Co/Pd]N systems, the magnetic proximity effect was demonstrated to be asymmetric, thus inducing a magnetic moment on the Pt (Pd) layer that is typically higher at the top Co/Pt(Pd) interface. In this work, advanced spectroscopic and imaging techniques were combined with theoretical approaches to clarify the origin of this asymmetry both in Co/Pt trilayers and, for the first time, in multilayer systems that are more relevant for practical applications. The different magnetic moment induced at the Co/Pt interfaces was correlated to the microstructural features that are in turn affected by the growth processes that induce a different intermixing during the film deposition, thus influencing the interface magnetic profile.

8.
Materials (Basel) ; 14(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34683654

ABSTRACT

The effects of thermomechanical processing (TMP) on the mechanical response of microalloyed steels subjected to dynamic loading conditions were examined. The deformation conditions in the thermomechanical laboratory rolling processes were selected on the basis of dilatometric tests. It allowed (with a constant value of total deformation) us to obtain microstructures with different compositions and morphology of the particular components. Several samples characterized by a particularly complex and unexpected representation of the obtained microstructures were selected for further research. Plastometric tests, i.e., compression and tensile tests, were performed under quasi-static loading with digital image correlation (DIC) analysis, and under dynamic loading on the Split Hopkinson Pressure Bar (SHPB) apparatus with strain rates of 1400 and 2000 s-1. Samples deformed in such conditions were subjected to microstructural analysis and hardness measurements. It has been observed that the use of various combinations of TMP parameters can result in the formation of specific microstructures, which in turn are the source of an attractive mechanical response under dynamic loading conditions. This opens up new possible areas of application for such popular structural materials which are microalloyed steels.

9.
Materials (Basel) ; 14(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34300739

ABSTRACT

The modern power generation industry needs materials able to withstand severe conditions, such as high temperatures, steam pressure, and an aggressive environment, to create more electric power out of a decreasing amount of fuel. Therefore, new metallic materials are continuously being developed. In order to gain knowledge about modern materials, the investigation of high Cr and Ni austenitic steel oxidized in 100% steam at 700 °C for 500 h was performed. The morphology, the phase composition, and the chemical composition of the oxidation products were investigated through methods of advanced electron microscopy techniques. Moreover, precipitates present in bulk material were identified. The material developed a continuous and complex oxide scale, consisting of Fe2O3, Cr2O3, and spinel phases. Very fine MX, fine ε-Cu, and M23C6 precipitates were found in the bulk material. The creation of iron oxide is induced due to the coarse grain size of the material. Cr2O3 forms due to the internal oxidation process.

10.
Materials (Basel) ; 14(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809776

ABSTRACT

Alloy 709 was oxidized at 700 °C for 500 h in a steam environment. A microstructural analysis of the oxide scale is reported. Modern techniques of advanced electron microscopy were used to characterize the morphology of the oxide scale and recognize its single components. The material developed a complex, multilayered oxide scale. The outermost layer consisting of Fe2O3. Fe2NiO4 tI28 spinel was detected underneath. An internal oxidation zone is present in the innermost layer. High quality SEM-EDS maps give insight into a larger area of the oxide scale at a relatively low magnification.

11.
Materials (Basel) ; 13(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049926

ABSTRACT

The microstructure of a René 108 Ni-based superalloy was systematically investigated by X-ray diffraction, light microscopy, energy-dispersive X-ray spectroscopy, and electron microscopy techniques. The material was investment cast in a vacuum and then solution treated (1200 °C-2h) and aged (900 °C-8h). The γ matrix is mainly strengthened by the ordered L12 γ' phase, with the mean γ/γ' misfit, δ, +0.6%. The typical dendritic microstructure with considerable microsegregation of the alloying elements is revealed. Dendritic regions consist of secondary and tertiary γ' precipitates. At the interface of the matrix with secondary γ' precipitates, nano M5B3 borides are present. In the interdendritic spaces additionally primary γ' precipitates, MC and nano M23C6 carbides were detected. The γ' precipitates are enriched in Al, Ta, Ti, and Hf, while channels of the matrix in Cr and Co. The highest summary concentration of γ'-formers occurs in coarse γ' surrounding MC carbides. Borides M5B3 contain mostly W, Cr and Mo. All of MC carbides are enriched strongly in Hf and Ta, with the concentration relationship between these and other strong carbide formers depending on the precipitate's morphology. The nano M23C6 carbides enriched in Cr have been formed as a consequence of phase transformation MC + γ → M23C6 + γ' during the ageing treatment.

12.
Materials (Basel) ; 13(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751588

ABSTRACT

Microstructural and morphological observations of the surface scale on a high Cr and Ni austenitic heat resistant steel oxidised in water vapour at 700 °C are reported. Analysis of microstructure was carried out by analytical techniques of transmission- and scanning electron microscopy. Investigation of M23C6 nucleated at the interface between matrix and the Z-phase precipitates after exposing to high temperature showed semicoherency between M23C6 and the matrix and no coherency with the Z-phase. Plates developed on the oxide scale surface consist of Cr2O3 crystals separated by amorphous SiO2.

13.
Materials (Basel) ; 13(10)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455991

ABSTRACT

In situ X-ray diffraction and transmission electron microscopy has been used to investigate René 108 Ni-based superalloy after short-term annealing at high-homologous temperatures. Current work is focused on characterisation of γ' precipitates, their volume fraction, evolution of the lattice parameter of γ and γ' phases and misfit parameter of γ' in the matrix. Material in the initial condition is characterised by a high-volume fraction (over 63%) of γ' precipitates. Irregular distribution of alloying elements was observed. Matrix channels were strongly enriched in Cr, Co, W and Mo, whereas precipitates contain large amount of Al, Ti, Ta and Hf. Exposure to high-homologous temperatures in the range 1100-1250 °C led to the dissolution of the precipitates, which influenced the change of lattice parameter of both γ and γ' phases. The lattice parameter of the matrix continuously grew during holding at high temperatures, which had a dominant influence on the more negative misfit coefficient.

14.
Nano Lett ; 19(10): 7324-7333, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31500416

ABSTRACT

Nearly a 30% increase in the ferromagnetic phase transition temperature has been achieved in strained MnAs nanocrystals embedded in a wurtzite GaAs matrix. Wurtzite GaAs exerts tensile stress on hexagonal MnAs nanocrystals, preventing a hexagonal to orthorhombic structural phase transition, which in bulk MnAs is combined with the magnetic one. This effect results in a remarkable shift of the magneto-structural phase transition temperature from 313 K in the bulk MnAs to above 400 K in the tensely strained MnAs nanocrystals. This finding is corroborated by the state of the art transmission electron microscopy, sensitive magnetometry, and the first-principles calculations. The effect relies on defining a nanotube geometry of molecular beam epitaxy grown core-multishell wurtzite (Ga,In)As/(Ga,Al)As/(Ga,Mn)As/GaAs nanowires, where the MnAs nanocrystals are formed during the thermal-treatment-induced phase separation of wurtzite (Ga,Mn)As into the GaAs-MnAs granular system. Such a unique combination of two types of hexagonal lattices provides a possibility of attaining quasi-hydrostatic tensile strain in MnAs (impossible otherwise), leading to the substantial ferromagnetic phase transition temperature increase in this compound.

15.
Materials (Basel) ; 12(18)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31489893

ABSTRACT

Laser Powder Bed Fusion (LPBF) technology was used to produce samples based on the Ti-6Al-4V alloy for biomedical applications. Solid-state phase transformations induced by thermal treatments were studied by neutron diffraction (ND), X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and energy-dispersive spectroscopy (EDS). Although, ND analysis is rather uncommon in such studies, this technique allowed evidencing the presence of retained ß in α' martensite of the as-produced (#AP) sample. The retained ß was not detectable by XRD analysis, nor by STEM observations. Martensite contains a high number of defects, mainly dislocations, that anneal during the thermal treatment. Element diffusion and partitioning are the main mechanisms in the α ↔ ß transformation that causes lattice expansion during heating and determines the final shape and size of phases. The retained ß phase plays a key role in the α' → ß transformation kinetics.

16.
Front Chem ; 7: 497, 2019.
Article in English | MEDLINE | ID: mdl-31380344

ABSTRACT

Copper (Cu) ions have a variety of advantageous biological functionalities, such as proangiogenic and bactericidal activities. Given the intrinsic biodegradability and biocompatibility, silicate-based mesoporous bioactive glass nanoparticles (MBGNs) are considered as promising platforms for the delivery of Cu ions. However, effective incorporation of Cu into MBGNs still faces challenges, e.g., particle aggregation, the formation of insoluble crystalline Cu-based nanoparticles, and a low loading amount of Cu. We report a novel method to synthesize chemically homogenous and highly dispersed Cu-containing MBGNs (Cu-MBGNs) with tunable Cu concentration by using ascorbic acid/Cu complexes as the precursor of Cu in a microemulsion-assisted sol-gel approach. Cu-MBGNs exhibited a sphere-like shape with a particle size between 100 and 300 nm while their pore size varied from 2 to 10 nm. The inclusion of Cu, regardless of the incorporated concentration, did not significantly affect the morphology of particles. ICP-AES results indicated that the concentration of Cu in the particles could be conveniently tuned from 0 to ~6 mol% by controlling the amount of ascorbic acid/Cu complexes added, while the formation of crystalline Cu-based nanoparticles was avoided. The amorphous feature of Cu-MBGNs was proved by XRD, while the predominant oxidation state of Cu was evidenced to be Cu2+ by XPS. The incorporation of Cu did not inhibit the apatite-forming ability (bioactivity) of the particles in contact with simulated body fluid. Cu-MBGNs exhibited the capability of releasing Cu, Si, and Ca ions over time in the physiological fluid. The concentration of released Cu ions could be controlled by selecting specific Cu-MBGNs of different Cu contents. The dissolution products of most Cu-MBGNs at the dosage of 1, 0.1, and 0.01 mg/mL did not exhibit cytotoxicity, while only 7Cu-MBGN was cytotoxic at the dosage of 1 mg/mL. This study provided a feasible strategy to synthesize highly dispersed amorphous Cu-MBGNs with high Cu concentrations for biomedical applications. The particles exhibit great potential as building blocks for developing composite 3D scaffolds, coatings, and drug carriers, particularly when a large amount of particles incorporated may compromise the properties of (polymer) matrix materials while a relatively high concentration of released Cu ions is still required.

17.
Mater Sci Eng C Mater Biol Appl ; 77: 780-789, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28532093

ABSTRACT

To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied. Antibacterial tests against gram-positive Staphylococcus aureus and gram-negative Salmonella enteric bacteria confirmed the activity of nZnO to prevent bacterial growth. Coatings composition and morphology were analyzed by thermogravimetric analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Moreover, the corrosion resistance was analyzed by evaluation of the polarization curves in DMEM at 37°C, and it was found that coatings containing nZnO increased the corrosion resistance compared to the bare substrate. Considering all results, the newly developed coatings represent a suitable alternative for the surface modification of metallic implants.


Subject(s)
Metal Nanoparticles , Anti-Bacterial Agents , Chitosan , Coated Materials, Biocompatible , Durapatite , Staphylococcus aureus , Zinc Oxide
18.
Chemistry ; 22(38): 13446-50, 2016 Sep 12.
Article in English | MEDLINE | ID: mdl-27356169

ABSTRACT

The atomic redistribution processes occurring in multiparticle nanostructures are hardly understood. To obtain a more detailed insight, we applied high-resolution microscopic, diffraction and spectroscopic characterization techniques to investigate the fine structure and elemental distribution of various bimetallic aerogels with 1:1 compositions, prepared by self-assembly of single monometallic nanoparticles. The system Au-Ag exhibited a complete alloy formation, whereas Pt-Pd aerogels formed a Pd-based network with embedded Pt particles. The assembly of Au and Pd nanoparticles resulted in a Pd-shell formation around the Au particles. This work confirms that bimetallic aerogels are subject to reorganization processes during their gel formation.

19.
J Mater Chem B ; 4(48): 7936-7949, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-32263784

ABSTRACT

Zinc (Zn)-containing materials have osteogenic and antibacterial activities while bioactive glass nanoparticles (BGN) show bone-bonding ability, as well as osteoconductive and osteoinductive properties. Zn-containing BGN are therefore considered to be promising materials for various biomedical applications, particularly in bone regeneration. In this study, we report a convenient method to prepare Zn-containing BGN by coating ZnO quantum dots (QDs) on BGN via electrostatic interactions. The synthesized ZnO-BGN nanocomposite particles are spherical and highly dispersed, and exhibit a unique fluorescence behavior under UV excitation, emitting three wavelengths in the violet, blue and green range. ZnO-BGN showed apatite-forming ability upon immersion in simulated body fluid, but their apatite formation was delayed compared to BGN. Interestingly, ZnO-BGN showed a rapid release of Zn ions at pH 4 but a far slower release at pH 7.4. ZnO-BGN also exhibited antibacterial effects on both Gram-positive and Gram-negative bacteria at the concentrations of 1, 0.1, and 0.01 mg mL-1. Higher concentrations could lead to stronger antibacterial effects. The LDH and live/dead assays indicated that ZnO-BGN had no significant cytotoxicity towards human mesenchymal stem cells (hMSC) at concentration of 0.1 and 0.01 mg mL-1, but ZnO-BGN inhibited the relative proliferation of hMSC compared to BGN and the control according to the MTT assay. Notably ZnO-BGN improved the osteogenic differentiation of hMSC as indicated by the determination of the alkaline phosphatase activity. In conclusion, coating quantum dots on BGN is a promising strategy to produce Zn-containing BGN. The synthesized ZnO-BGN are potential materials for bone regeneration, considering their apatite-forming ability, unique ion-release behavior, effective antibacterial activity, non-cytotoxicity, and osteogenic potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...