Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 6(1): txab230, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35047760

ABSTRACT

The beef cow-calf sector accounts for 70% of feed consumed and greenhouse gases emitted for the beef industry, but there is no straightforward method to measure biological efficiency in grazing conditions. The objective of this study was to evaluate a mathematical nutrition model to estimate the feed intake and biological efficiency of mature beef cows. Data from dams (N = 160) and their second and third progeny (312 pairs) were collected from 1953 through 1980. Individual feed intake was measured at 28-d intervals year-round for dams and during 240-d lactation for progeny. Body weights of progeny were measured at 28-d intervals from birth to weaning, and of dams at parturition and weaning each production cycle. The milk yield of dams was measured at 14-d intervals. Dam metabolizable energy intake (DMEI) and milk energy yield (MEL) of each cow were predicted using the Cattle Value Discovery System beef cow (CVDSbc) model for each parity. Biological efficiency (Mcal/kg) was computed as the ratio of observed or predicted DMEI to observed calf weaning weight (PWW). Pearson correlation coefficients were computed using corr.test function and model evaluation was performed using the epiR function in R software. Average (SD) dam weight, PWW, DMEI, and observed MEL were 527 (86) kg, 291 (47) kg, 9584 (2701) Mcal/production cycle, and 1029 (529) Mcal, respectively. Observed and predicted DMEI (r = 0.93 and 0.91), and observed and predicted MEL (r = 0.58 and 0.59) were positively correlated for progeny 2 and 3, respectively. The CVDSbc model under-predicted DMEI (mean bias [MB] = 1,120 ± 76 Mcal, 11.7% of observed value) and MEL (MB = 30 ± 25 Mcal, 2.9% of observed value). Observed and predicted progeny feed intake were not correlated (r = 0.01, P-value = 0.79). Observed and predicted biological efficiency were positively correlated (r = 0.80 and 0.80, P-value ≤ 0.05) for parity 2 and 3, respectively, and the CVDSbc model under-predicted biological efficiency by 11% (MB = 3.59 ± 0.25 Mcal/kg). The CVDSbc provides reasonable predictions of feed intake and biological efficiency of mature beef cows, but further refinement of the relationship between calf feed intake and milk yield is recommended to improve predictions. Mathematical nutrition models can assist in the discovery of the biological efficiency of mature beef cows.

2.
Transl Anim Sci ; 5(3): txab111, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34345800

ABSTRACT

Understanding the relationships between feed efficiency traits measured in different stages of production is necessary to improve feed efficiency across the beef value chain. The objective of this study was to evaluate relationships among feed efficiency traits measured as growing heifers and breeding females and in their progeny in three full production cycles, and relationships of dam residual feed intake (RFI) with lifetime and lifecycle cow efficiency traits. Data were collected on 160 mixed-breed heifers from 240 d of age to weaning of their third progeny, and postweaning performance of progeny until harvest in experiments initiated in 1953, 1954, 1959, 1964, 1969, and 1974. Individual feed offered was recorded daily, and feed refusals measured every 28 d. Milk yield was measured at 14-d intervals throughout lactation by machine or hand milking. Females and progeny were weighed at 28-d intervals and progeny were harvested at a constant endpoint of live grade or age depending upon the experiment. Feed efficiency traits of RFI and residual BW gain (RG) were computed as the residual from linear regression for developing heifers, dams (RFI and residual energy-corrected milk [RECM]), and postweaning progeny. Feed:gain ratio (FCR) was computed for developing heifers and postweaning progeny, and feed:milk energy ratio (FME) was computed for dams. Various measures of cow efficiency were calculated on either a life cycle or lifetime basis using ratios of progeny and dam weight outputs to progeny and dam feed inputs. Pearson correlations were computed among traits adjusted for a random year-breed-diet group effect. Heifer RFI (0.74) and RG (-0.32) were correlated (P ≤ 0.05) with dam RFI in parity 1 only, but were not correlated (P > 0.05) with dam RECM in any parity. Heifer RFI was correlated (P ≤ 0.05) with progeny RFI (0.17) in parity 3 only. Heifer FCR was not correlated with dam FME or progeny FCR in any parity. Dam RFI was weakly correlated (r = 0.25 to 0.36; P ≤ 0.05) among parities, whereas dam FME and RECM were strongly correlated (r = 0.49 to 0.72; P ≤ 0.05) among parities. Dam RFI in parity 1 and 2 was weakly correlated (r = -0.20 to -0.33; P ≤ 0.05) with cow efficiency ratios that included dam weight as an output, whereas dam RFI in parity 3 was not correlated with any cow efficiency ratio. In conclusion, feed efficiency traits were poorly correlated across production segments, but moderately repeatable across production cycles.

3.
BMC Genet ; 10: 13, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19284551

ABSTRACT

BACKGROUND: Reproductive disorders and infertility are surprisingly common in the human population as well as in other species. The decrease in fertility is a major cause of cow culling and economic loss in the dairy herd. The conception rate has been declining for the past 30-50 years. Conception rate is the product of fertilization and embryonic survival rates. In a previous study, we have identified associations of several single nucleotide polymorphisms (SNPs) in the signal transducer and activator 5A (STAT5A) with fertilization and survival rates in an in vitro experimental system. The objectives of this study are to fine map the STAT5A region in a search for causative mutations and to investigate the parent of origin expression of this gene. RESULTS: We have performed a total of 5,222 fertilizations and produced a total of 3,696 in vitro fertilized embryos using gametes from 440 cows and eight bulls. A total of 37 SNPs were developed in a 63.4-kb region of genomic sequence that includes STAT5A, STAT3, and upstream and downstream sequences of these genes. SNP153137 (G/C) in exon 8 of STAT5A was associated with a significant variability in embryonic survival and fertilization rate compared to all other examined SNPs. Expression analysis revealed that STAT5A is primarily monoallelically expressed in early embryonic stages but biallelically expressed in later fetal stages. Furthermore, the occurrence of monoallelic maternal expression of STAT5A was significantly higher in blastocysts, while paternal expression was more frequent in degenerative embryos. CONCLUSION: Our results imply that STAT5A affects embryonic survival in a manner influenced by developmental stage and allele parent of origin.


Subject(s)
Cattle/genetics , Embryonic Development/genetics , STAT5 Transcription Factor/genetics , Alleles , Animals , Blastocyst/metabolism , Cattle/embryology , Chromosome Mapping , Embryo, Mammalian/embryology , Female , Fertilization/genetics , Gene Expression Regulation, Developmental , Genotype , Male , Mutation , Polymorphism, Single Nucleotide
4.
Theriogenology ; 65(1): 219-27, 2006 Jan 07.
Article in English | MEDLINE | ID: mdl-16263159

ABSTRACT

Use of sexed semen in conjunction with in vitro embryo production is a potentially efficient means of obtaining offspring of predetermined sex. For thousands of years, livestock owners have desired a methodology to predetermine the sex of offspring for their herds. The ability to sort individual sperm cells into viable X- and Y-chromosome-bearing fractions made producers' sex selection dreams reality in the 1990s and now semen can be sexed with greater than 90% accuracy with use of a flow cytometric cell sorter. Several concerns regarding the implementation of sexed semen technology include the apparent lower fertility of sorted sperm, the lower survival of sorted sperm after cryopreservation and the reduced number of sperm that could be separated in a specified time period. These issues are discussed in this review. There are also a number of issues that appear to influence the success rates of using sexed semen to produce bovine embryos in vitro. These issues include reductions in fertilization rates, lower cleavage rates, blastocyst rates and pregnancy rates, partial capacitation of the sperm, dilute sperm samples and sire variation. These subjects are also addressed in this paper. Finally, we will describe a recent field trial in which female Holstein embryos produced using the combined technologies of sex-selected semen and microfluidics were transferred either as single or bilateral twin embryos into beef cattle recipients, demonstrating these technologies' contributions to viable embryo production. The results indicate that large-scale transfer of in vitro produced, Holstein heifer embryos to beef recipients is a feasible production scheme.


Subject(s)
Cattle/genetics , Sex Preselection , Spermatozoa/chemistry , Animals , Cattle/embryology , Cattle/physiology , Cell Separation/veterinary , DNA/chemistry , Female , Fertility/physiology , Flow Cytometry/veterinary , Male , Pregnancy , Reproductive Techniques/adverse effects , Reproductive Techniques/veterinary , Semen , Sex Determination Analysis , Spermatozoa/cytology
5.
Cryobiology ; 47(1): 73-81, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12963414

ABSTRACT

Cryopreservation causes a significant proportion of bovine oocytes to undergo degeneration during subsequent culture. We investigated the degeneration mechanism of cryopreserved oocytes. In vitro matured bovine oocytes were vitrified by the open-pulled straw (OPS) method. In each replicate, a group of oocytes were randomly taken after warming to determine oocyte survival by both morphological evaluation and propidium iodide vital staining. The remainders were evaluated by morphological criterion. Morphologically intact oocytes were co-incubated with frozen-thawed spermatozoa for subsequent development. In situ examination of DNA breaks in oocytes and embryos was conducted using a Fluorescein-FragEL DNA fragmentation detection kit. A caspase-3 detection kit was used to detect caspase-3 activity in oocytes and embryos. Most of the oocytes survived cooling and warming processes as assessed by both morphological evaluation and vital stain. During subsequent culture, some degenerating oocytes displayed observable apoptotic morphology, such as cytoplasmic condensation, cytoplasmic fragmentation, and formation of apoptotic bodies. Biochemical markers of apoptosis, such as apoptotic DNA fragmentation and activation of caspases, were detected not only in oocytes having typical apoptotic morphology, but also in oocytes without observable apoptotic morphology. In embryos, positive signals for both biochemical markers were detected in blastomeres. This experiment suggests that cryopreserved bovine oocytes degenerate via apoptosis during subsequent culture.


Subject(s)
Cryopreservation/veterinary , DNA Fragmentation/physiology , Oocytes/cytology , Animals , Caspase 3 , Caspases/metabolism , Cattle , Cell Survival/physiology , Cells, Cultured/cytology , Oocytes/enzymology
6.
Theriogenology ; 57(3): 1095-103, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12041903

ABSTRACT

We investigated the effect of meiotic stages and two maturation protocols on bovine oocyte's resistance to cryopreservation. Oocytes at germinal vesicle breakdown (GVBD) and metaphase II (MII) stage as well as oocytes matured for 22 h in media supplemented with FSH or LH were vitrified by the open pulled straw method. After warming, oocytes underwent additional 16 h (GVBD group) or 2 h (MII group) maturation. Then they were subjected to in vitro fertilization and culture. Some oocytes that matured in the medium supplemented with LH were subjected to parthenogenetic activation after vitrification to determine their developmental potential in absence of fertilization. Survival of oocytes after vitrifying/warming was determined after 22 h in fertilization medium. Cleavage and blastocyst formation rates were used to assess their developmental competence. In both experiments, a portion of unvitrified MII oocytes were subjected to in vitro fertilization and culture as control groups. In Experiment 1, similar cleavage rates were obtained for both GVBD and MII oocytes (53.56 versus 58.01%, P > 0.05). However, significantly higher proportion of cleaved embryos from vitrified MII oocytes developed into blastocysts than those from vitrified GVBD oocytes (1.06 versus 8.37%, respectively, P < 0.01). In Experiment 2, vitrified MII oocytes matured in medium supplemented with LH were superior to vitrified MII oocytes matured in FSH supplementation not only in cleavage rates (61.13 versus 50.33%), but in blastocyst formation rates (11.79 versus 5.19%, P < 0.01) as well. Cleavage and blastocyst formation rates of parthenogenetically activated oocytes were similar to those that were fertilized. Nevertheless, the vitrifying/ warming process significantly compromised the oocytes' developmental capacity since the vitrified oocytes showed significant reduction in both cleavage and blastocyst rates compared to those of not vitrified controls in both experiments (P < 0.01). We showed that oocytes at different maturation stages respond to cryopreservation differently and MII stage oocytes have better resistance to cryopreservation than GVBD stage oocytes. The maturation protocols also influence oocyte's ability to survive cryopreservation. Poor developmental potential after vitrification seem to have resulted from the cryodamage to the oocyte itself. These results suggested the importance of maturation on the developmental competence of cryopreserved oocytes.


Subject(s)
Cryopreservation , Meiosis , Oocytes/cytology , Oocytes/physiology , Animals , Blastocyst/physiology , Cattle , Cell Survival , Cells, Cultured , Cleavage Stage, Ovum , Culture Media , Female , Fertilization in Vitro/veterinary , Follicle Stimulating Hormone/administration & dosage , Hot Temperature , Luteinizing Hormone/administration & dosage , Parthenogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...