Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569825

ABSTRACT

Re-epithelialization is delayed in aged skin due to a slow rate of keratinocyte proliferation, and this may cause complications. Thus, there has been development of new therapies that increase treatment efficacy for skin wounds. Epidermal growth factor (EGF) has been clinically used, but this agent is expensive, and its activity is less stable. Therefore, a stable compound possessing EGF-like properties may be an effective therapy, especially when combined with EGF. The current study discovered that pinocembrin (PC) effectively synergized with EGF in increasing keratinocyte viability. The combination of PC and EGF significantly enhanced the proliferation and wound closure rate of the keratinocyte monolayer through activating the phosphorylation of ERK and Akt. Although these effects of PC were like those of EGF, we clearly proved that PC did not transactivate EGFR. Recent data from a previous study revealed that PC activates G-protein-coupled receptor 120 which further activates ERK1/2 and Akt phosphorylation. Therefore, this clearly indicates that PC possesses a unique property to stimulate the growth and survival of keratinocytes through activating a different receptor, which subsequently conveys the signal to cross-talk with the effector kinases downstream of the EGFR, suggesting that PC is a potential compound to be combined with EGF.


Subject(s)
Epidermal Growth Factor , ErbB Receptors , Humans , Aged , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Keratinocytes/metabolism , Phosphorylation , Cell Proliferation
2.
Pharmaceuticals (Basel) ; 16(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242538

ABSTRACT

In the current study, we identified a mechanism of resveratrol (RES) underlying its anti-cancer properties against human ovarian adenocarcinoma SKOV-3 cells. We investigated its anti-proliferative and apoptosis-inducing effects in combination with cisplatin, using cell viability assay, flow cytometry, immunofluorescence study and Western blot analysis. We discovered that RES suppressed cancer cell proliferation and stimulated apoptosis, especially when combined with cisplatin. This compound also inhibited SKOV-3 cell survival, which may partly be due to its potential to inhibit protein kinase B (AKT) phosphorylation and induce the S-phase cell cycle arrest. RES in combination with cisplatin strongly induced cancer cell apoptosis through activating the caspase-dependent cascade, which was associated with its ability to stimulate nuclear phosphorylation of p38 mitogen-activated protein kinase (MAPK), well recognized to be involved in transducing environmental stress signals. RES-induced p38 phosphorylation was very specific, and the activation status of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) was not mainly affected. Taken together, our study provides accumulated evidence that RES represses proliferation and promotes apoptosis in SKOV-3 ovarian cancer cells through activating the p38 MAPK pathway. It is interesting that this active compound may be used as an effective agent to sensitize ovarian cancer to apoptosis induced by standard chemotherapies.

3.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-36015102

ABSTRACT

Pinocembrin is one of the well-known compounds in the group of flavonoids. The pharmacological activities of pinocembrin in association with wound-healing activities have been reported. However, its effects on the aspect of cellular interaction underlying growth and survival are still unidentified in human keratinocytes. Our previous study reported that Boesenbergia rotunda potently stimulated survival and proliferation of a human keratinocyte cell line (HaCaT). On the basis that pinocembrin is revealed to be one of the major constituents of this plant, we aimed to define the survival- and proliferation-enhancing effects of this compound at the cellular level. Results from the current study confirmed that pinocembrin induced an increase in HaCaT cell number. At the signaling perspective, we identified that pinocembrin significantly triggered ERK1/2 and Akt activation. The stimulating effects of pinocembrin were clearly inhibited by MEK and PI3K inhibitors authenticating that proliferation- and survival-promoting activities of pinocembrin were mainly acted on these two signaling cascades. Altogether, we successfully identified that pinocembrin functions to induce keratinocyte proliferation and survival, at least by provoking MAPK and PI3K pathways. Our study encourages the fact that pinocembrin is one of the interesting natural flavonoid compounds to be developed as a wound closure-promoting agent.

4.
Biomed Res Int ; 2022: 2028082, 2022.
Article in English | MEDLINE | ID: mdl-35655474

ABSTRACT

Cervical cancer is rated to be the leading cause of cancer-related death in women worldwide. Since screening test and conventional treatments are less accessible for people in developing countries, an alternative use of medicinal plants exhibiting strong anticancer activities may be an affordable means to treat cervical cancer. Mitrephora chulabhorniana (MC) is the newly identified species; however, its biological functions including anticancer activities have been largely unexplored. Hence, in this study, we were interested in investigating anticancer effects of this plant on the human cervical cell line (HeLa). MC extract was profiled for phytochemicals by TLC. This plant was tested to contain alkaloids, flavonoids, and terpenes. HeLa cells were treated with MC extract to investigate the anticancer activities. Cytotoxicity and viability of cells treated with MC were determined by MTT assay and Trypan blue exclusion assay. Cell migration was tested by wound healing assay, and cell invasion was determined by Transwell assay. The level of caspase 7, caspase 9, and PARP was determined by western blot analysis. We found that the leaf extract of MC strongly reduced cancer cell survival rate. This finding was consistent with the discovery that the extract dramatically induced apoptosis of cervical cancer cells through the activation of caspase 7 and caspase 9 which consequently degraded PARP protein. Furthermore, MC extract at lower concentrations which were not cytotoxic to the cancer cells showed potent inhibitory activities against HeLa cervical cancer cell migration and invasion. Mitrephora chulabhorniana possesses its pharmacological properties in inhibiting cervical cancer cell migration/invasion and inducing apoptotic signaling. This accumulated information suggests that Mitrephora chulabhorniana may be a beneficial source of potential agents for cervical cancer treatment.


Subject(s)
Annonaceae , Uterine Cervical Neoplasms , Apoptosis , Caspase 7/metabolism , Caspase 9/metabolism , Caspases/metabolism , Cell Line, Tumor , Female , HeLa Cells , Humans , Plant Extracts/chemistry , Poly(ADP-ribose) Polymerase Inhibitors , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism
5.
Plants (Basel) ; 10(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34371622

ABSTRACT

Zingiber ottensii (ZO) is a local plant in Thailand and has been used as a Thai traditional therapy for many conditions. ZO has been reported to exhibit many pharmacological effects, including anti-cancer activity. Nevertheless, its anti-cancer effects explored at the signaling level have not been elucidated in cervical cancer, which is one of the leading causes of fatality in females. We discovered that the essential oil of ZO significantly increased the apoptosis of human cervical cancer cells (HeLa) after 24 h of treatment in a concentration-dependent manner. Our data also clearly demonstrated that ZO essential oil reduced IL-6 levels in the culture supernatants of the cancer cells. Moreover, Western blot analysis clearly verified that cells were induced to undergo apoptotic death via caspase activation upon treatment with ZO essential oil. Interestingly, immunofluorescence studies and Western blot analyses showed that ZO essential oil suppressed epidermal growth factor (EGF)-induced pAkt and pERK1/2 signaling pathway activation. Together, our study demonstrates that ZO essential oil can reduce the proliferation and survival signaling of HeLa cervical cancer cells. Our study provides convincing data that ZO essential oil suppresses the growth and survival of cervical cancer cells, and it may be a potential choice for developing an anti-cancer agent for treating certain cervical cancers.

6.
Biomed Pharmacother ; 141: 111911, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34328090

ABSTRACT

Ovarian clear cell carcinoma (OCCC) is an uncommon subtype of epithelial cell ovarian cancers (EOCs) that has poor response to conventional platinum-based therapy. Therefore, finding new potential therapeutic agents is required. Since inflammatory cytokine, tumor necrosis factor alpha (TNF-α), is strongly expressed in EOCs and associated with the level of tumor grade, disruption of this inflammation pathway may provide another potential target for OCCC treatment. We previously reported that Kaempferia parviflora (KP) extract decreased cell proliferation and induced apoptosis. However, the effects of KP on OCCC, especially the aspects related to inflammatory cytokines, have not been elucidated. Our current study demonstrated the effects of KP extract on cytokine production in TNF-α-induced OCCC TOV-21G cell line. This study showed that KP extract inhibited interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production at both transcription and translation levels via the suppression of nuclear factor-kappa B (NF-κB) signal transduction. In contrast, KP extract increased the expression of inhibitor kappa B (IκB) protein which may delay NF-κB translocation into the nucleus upon TNF-α activation. Moreover, the suppression of cytokines released from KP treated-TOV-21G reduced the migration of monocyte cell (THP-1). KP extract also exhibited the inhibition of IL-6 and MCP-1 production from THP-1 activated by lipopolysaccharides (LPS). Cells treated with KP extract exhibited a decrease in extracellular signal-regulated kinases (ERK1/2) and protein kinase B (AKT) phosphorylation and induced myeloid leukemia cell differentiation protein Mcl-1 (MCL-1) expression. Suppression of inflammatory cytokine and chemokine production and inhibition of tumor-associated macrophage (TAM) migration support the possibility of using KP for OCCC treatment.


Subject(s)
Chemokine CCL2/metabolism , NF-kappa B/metabolism , Ovarian Neoplasms/metabolism , Plant Extracts/pharmacology , Tumor Necrosis Factor-alpha/toxicity , Zingiberaceae , Cell Movement/drug effects , Cell Movement/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Female , Humans , NF-kappa B/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors
7.
Biology (Basel) ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916174

ABSTRACT

Many medicinal plants have been used to treat wounds. Here, we revealed the potential wound healing effects of Curcuma amarissima (CA). Our cell viability assay showed that CA extract increased the viability of HaCaT cells that were cultured in the absence of serum. This increase in cell viability was proved to be associated with the pharmacological activities of CA extract in inducing cell proliferation. To further define possible molecular mechanisms of action, we performed Western blot analysis and immunofluorescence study, and our data demonstrated that CA extract rapidly induced ERK1/2 and Akt activation. Consistently, CA extract accelerated cell migration, resulting in rapid healing of wounded human keratinocyte monolayer. Specifically, the CA-induced increase of cell monolayer wound healing was blocked by the MEK inhibitor (U0126) or the PI3K inhibitor (LY294002). Moreover, CA extract induced the expression of Mcl-1, which is an anti-apoptotic protein, supporting that CA extract enhances human keratinocyte survival. Taken together, our study provided convincing evidence that Curcuma amarissima can promote proliferation and survival of human keratinocyte through stimulating the MAPK and PI3K/Akt signaling cascades. These promising data emphasize the possibility to develop this plant as a wound healing agent for the potential application in regenerative medicine.

8.
Biomed Pharmacother ; 133: 111002, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33212374

ABSTRACT

Boesenbergia rotunda (BR) has long been used as tradition medicine. For its pharmacological effects on wound healing, previous studies in an animal model provided convincing results that the ethanolic extract from the rhizome of this plant can stimulate wound healing. However, the mechanism about how this plant promotes wound healing at the molecular level has not been elucidated. As a step towards the development of wound healing agents, our current study utilized a human keratinocyte cell line (HaCaT) as an in vitro model to define the potential molecular mechanisms of BR extract in enhancing wound-healing. Our HPLC results showed that BR extract contained kaempferol as one of its potential compounds. The extract strongly promoted wound healing of HaCaT cell monolayer. This effect was eventually defined to be regulated through the ability of BR extract to induce cell proliferation. At the signaling level, we discovered that BR extract rapidly activated ERK1/2 and Akt phosphorylation upon the addition of the extract. Additionally, our experiments where specific inhibitors of MEK (U0126) and PI3K (LY294002) were utilized verified that BR enhanced cell proliferation and wound healing through stimulating the MAPK and PI3K/Akt signal transduction pathways. Moreover, direct inhibition of keratinocyte DNA synthesis by mitomycin C (MMC) could completely block the proliferative effects of BR extract. Nevertheless, data from Transwell migration assay revealed that BR extract did not promote keratinocyte migration. Altogether, we provided more evidence that BR possesses its wound healing-promoting action through the activation of proliferation and survival pathways, and our study suggests that BR is an interesting candidate to be developed as a wound healing-promoting agent.


Subject(s)
Cell Proliferation/drug effects , Keratinocytes/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Wound Healing/drug effects , Zingiberaceae , Cell Line , Enzyme Activation , Humans , Keratinocytes/enzymology , Keratinocytes/pathology , Phosphorylation , Plant Extracts/isolation & purification , Signal Transduction , Zingiberaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...