Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(6): e0298868, 2024.
Article in English | MEDLINE | ID: mdl-38843128

ABSTRACT

Commercial fisheries along the US West Coast are important components of local and regional economies. They use various fishing gear, target a high diversity of species, and are highly spatially heterogeneous, making it challenging to generate a synoptic picture of fisheries activity in the region. Still, understanding the spatial and temporal dynamics of US West Coast fisheries is critical to meet the US legal mandate to manage fisheries sustainably and to better coordinate activities among a growing number of users of ocean space, including offshore renewable energy, aquaculture, shipping, and interactions with habitats and key non-fishery species such as seabirds and marine mammals. We analyzed vessel tracking data from Vessel Monitoring System (VMS) from 2010 to 2017 to generate high-resolution spatio-temporal estimates of contemporary fishing effort across a wide range of commercial fisheries along the entire US West Coast. We identified over 247,000 fishing trips across the entire VMS data, covering over 25 different fisheries. We validated the spatial accuracy of our analyses using independent estimates of spatial groundfish fisheries effort generated through the NOAA's National Marine Fisheries Service Observer Program. Additionally, for commercial groundfish fisheries operating in federal waters in California, we combined the VMS data with landings and ex-vessel value data from California commercial fisheries landings receipts to generate highly resolved estimates of landings and ex-vessel value, matching over 38,000 fish tickets with VMS data that included 87% of the landings and 76% of the ex-vessel value for groundfish. We highlight fisheries-specific and spatially-resolved patterns of effort, landings, and ex-vessel value, a bimodal distribution of fishing effort with respect to depth, and variable and generally declining effort over eight years. The information generated by our study can help inform future sustainable spatial fisheries management and other activities in the marine environment including offshore renewable energy planning.


Subject(s)
Conservation of Natural Resources , Fisheries , Fisheries/legislation & jurisprudence , Fisheries/economics , California , Animals , Conservation of Natural Resources/methods , Ecosystem , Fishes , Ships
2.
Sci Rep ; 13(1): 1405, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36697490

ABSTRACT

Anthropogenic stressors from climate change can affect individual species, community structure, and ecosystem function. Marine heatwaves (MHWs) are intense thermal anomalies where water temperature is significantly elevated for five or more days. Climate projections suggest an increase in the frequency and severity of MHWs in the coming decades. While there is evidence that marine protected areas (MPAs) may be able to buffer individual species from climate impacts, there is not sufficient evidence to support the idea that MPAs can mitigate large-scale changes in marine communities in response to MHWs. California experienced an intense MHW and subsequent El Niño Southern Oscillation event from 2014 to 2016. We sought to examine changes in rocky reef fish communities at four MPAs and associated reference sites in relation to the MHW. We observed a decline in taxonomic diversity and a profound shift in trophic diversity inside and outside MPAs following the MHW. However, MPAs seemed to dampen the loss of trophic diversity and in the four years following the MHW, taxonomic diversity recovered 75% faster in the MPAs compared to reference sites. Our results suggest that MPAs may contribute to long-term resilience of nearshore fish communities through both resistance to change and recovery from warming events.


Subject(s)
Ecosystem , Fishes , Animals
3.
Glob Chang Biol ; 26(9): 4785-4799, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32691514

ABSTRACT

Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes-and often presume a universal decline of ecosystem services with coral loss-rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous "bright spots," where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low-coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.


Subject(s)
Anthozoa , Coral Reefs , Animals , Benchmarking , Caribbean Region , Ecosystem , Fishes , West Indies
4.
Ecol Appl ; 29(4): e01893, 2019 06.
Article in English | MEDLINE | ID: mdl-31026114

ABSTRACT

Overexploitation of key species can negatively impact ecosystem processes, so understanding the ecological roles of individual species is critical for improving ecosystem management. Here, we use coral reefs and the process of herbivory as a model to examine how species identity of consumers influence ecosystem processes to inform management of these consumers. Herbivorous fishes can facilitate the recruitment, growth, and recovery of corals by controlling the fast-growing algae that can outcompete corals for space. However, herbivorous fish guilds are species rich with important differences among species in diet, movement, and habitat preferences. Yet, we lack a general understanding of (1) how these species-specific differences in feeding and behavior scale up to reef-wide rates of ecosystem processes and (2) how species identity and diversity impact these processes. To address these knowledge gaps, we used field observations to derive key species- and size-specific foraging parameters for nine herbivorous parrotfish species on coral reefs in the Florida Keys, USA. We then combined these foraging parameters with fish survey data spanning multiple spatial scales to estimate the rates of three ecosystem processes: area of reef grazed, amount of macroalgae removed, and rate of bioerosion. We found that predicted rates of ecological processes varied dramatically among habitats and among reef zones within habitats, driven primarily by variation in abundance among species with different foraging behaviors. In some cases, assemblages with similar levels of total biomass had different rates of ecological processes, and in others, assemblages with different biomass had similar rates of ecological processes. Importantly, our models of herbivory using species-specific parameters differed from those using genus-level parameters by up to 300% in rates of ecological processes, highlighting the importance of herbivore identity in this system. Our results indicate that there may be little overlap in the roles species play, suggesting that some systems may be vulnerable to loss of ecological function with the reduction or loss of just a few species. This work provides a framework that can be applied across the region to predict how changes in management may affect the ecological impact of these important herbivores.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecology , Ecosystem , Fishes , Florida , Herbivory
5.
Mar Pollut Bull ; 133: 717-733, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041369

ABSTRACT

Coral populations and structural coral reefs have undergone severe reductions and losses respectively over large parts of the Galápagos Islands during and following the 1982-83 El Niño event. Coral tissue loss amounted to 95% across the Archipelago. Also at that time, all coral reefs in the central and southern islands disappeared following severe degradation and eventual collapse due primarily to intense bioerosion and low recruitment. Six sites in the southern islands have demonstrated low to moderate coral community (scattered colonies, but no carbonate framework) recovery. The iconic pocilloporid reef at Devil's Crown (Floreana Island) experienced recovery to 2007, then severe mortality during a La Niña cooling event, and is again (as of 2017) undergoing rapid recovery. Notable recovery has occurred at the central (Marchena) and northern islands (Darwin and Wolf). Of the 17 structural reefs first observed in the mid-1970s, the single surviving reef (Wellington Reef) at Darwin Island remains in a positive growth mode. The remainder either degraded to a coral community or was lost. Retrospective analyses of the age structure of corals killed in 1983, and isotopic signatures of the skeletal growth record of massive corals suggest the occurrence of robust coral populations during at least a 500-year period before 1983. The greatest potential threats to the recovery and persistence of coral reefs include: ocean warming and acidification, bioerosion, coral diseases, human population growth (increasing numbers of residents and tourists), overfishing, invasive species, pollution, and habitat destruction. Such a diverse spectrum of disturbances, acting alone or in combination, are expected to continue to cause local and archipelago-wide mortality and degradation of the coral reef ecosystem.


Subject(s)
Anthozoa/physiology , Coral Reefs , Animals , Carbonates , Climate , Ecosystem , Ecuador , El Nino-Southern Oscillation , Humans , Pacific Ocean , Retrospective Studies
6.
PLoS One ; 13(1): e0189355, 2018.
Article in English | MEDLINE | ID: mdl-29309413

ABSTRACT

To inform a community-based ocean zoning initiative, we conducted an intensive ecological assessment of the marine ecosystems of Barbuda, West Indies. We conducted 116 fish and 108 benthic surveys around the island, and measured the abundance and size structure of lobsters and conch at 52 and 35 sites, respectively. We found that both coral cover and fish biomass were similar to or lower than levels observed across the greater Caribbean; live coral cover and abundance of fishery target species, such as large snappers and groupers, was generally low. However, Barbuda lacks many of the high-relief forereef areas where similar work has been conducted in other Caribbean locations. The distribution of lobsters was patchy, making it difficult to quantify density at the island scale. However, the maximum size of lobsters was generally larger than in other locations in the Caribbean and similar to the maximum size reported 40 years ago. While the lobster population has clearly been heavily exploited, our data suggest that it is not as overexploited as in much of the rest of the Caribbean. Surveys of Barbuda's Codrington Lagoon revealed many juvenile lobsters, but none of legal size (95 mm carapace length), suggesting that the lagoon functions primarily as nursery habitat. Conch abundance and size on Barbuda were similar to that of other Caribbean islands. Our data suggest that many of the regional threats observed on other Caribbean islands are present on Barbuda, but some resources-particularly lobster and conch-may be less overexploited than on other Caribbean islands. Local management has the potential to provide sustainability for at least some of the island's marine resources. We show that a rapid, thorough ecological assessment can reveal clear conservation opportunities and facilitate rapid conservation action by providing the foundation for a community-driven policymaking process at the island scale.


Subject(s)
Ecosystem , Fisheries , Marine Biology , Oceans and Seas , Animals , Antigua and Barbuda , Biodiversity , Conservation of Natural Resources
7.
Sci Data ; 3: 160087, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27727238

ABSTRACT

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.


Subject(s)
Bivalvia/physiology , Body Temperature , Animals , Climate Change , Ecosystem
8.
Oecologia ; 179(4): 1173-85, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26245147

ABSTRACT

The recent loss of key consumers to exploitation and habitat degradation has significantly altered community dynamics and ecosystem function across many ecosystems worldwide. Predicting the impacts of consumer losses requires knowing the level of functional diversity that exists within a consumer assemblage. In this study, we document functional diversity among nine species of parrotfishes on Caribbean coral reefs. Parrotfishes are key herbivores that facilitate the maintenance and recovery of coral-dominated reefs by controlling algae and provisioning space for the recruitment of corals. We observed large functional differences among two genera of parrotfishes that were driven by differences in diet. Fishes in the genus Scarus targeted filamentous algal turf assemblages, crustose coralline algae, and endolithic algae and avoided macroalgae, while fishes in the genus Sparisoma preferentially targeted macroalgae. However, species with similar diets were dissimilar in other attributes, including the habitats they frequented, the types of substrate they fed from, and the spatial scale at which they foraged. These differences indicate that species that appear to be functionally redundant when looking at diet alone exhibit high levels of complementarity when we consider multiple functional traits. By identifying key functional differences among parrotfishes, we provide critical information needed to manage parrotfishes to enhance the resilience of coral-dominated reefs and reverse phase shifts on algal-dominated reefs throughout the wider Caribbean. Further, our study provides a framework for predicting the impacts of consumer losses in other species rich ecosystems.


Subject(s)
Anthozoa , Coral Reefs , Herbivory , Perciformes/physiology , Seaweed , Animals , Caribbean Region , Diet , Ecosystem
9.
PLoS One ; 6(6): e21062, 2011.
Article in English | MEDLINE | ID: mdl-21698165

ABSTRACT

In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.


Subject(s)
Anthozoa , Fishes/physiology , Predatory Behavior , Animals
10.
Ecol Lett ; 10(8): 745-58, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17594430

ABSTRACT

There are a variety of proposed evolutionary and ecological explanations for why some species have more extensive geographical ranges than others. One of the most common explanations is variation in species' dispersal ability. However, the purported relationship between dispersal distance and range size has been subjected to few theoretical investigations, and empirical tests reach conflicting conclusions. We attempt to reconcile the equivocal results of previous studies by reviewing and synthesizing quantitative dispersal data, examining the relationship between average dispersal ability and range size for different spatial scales, regions and taxonomic groups. We use extensive data from marine taxa whose average dispersal varies by seven orders of magnitude. Our results suggest dispersal is not a general determinant of range size, but can play an important role in some circumstances. We also review the mechanistic theories proposed to explain a positive relationship between range size and dispersal and explore their underlying rationales and supporting or refuting evidence. Despite numerous studies assuming a priori that dispersal influences range size, this is the first comprehensive conceptual evaluation of these ideas. Overall, our results indicate that although dispersal can be an important process moderating species' distributions, increased attention should be paid to other processes responsible for range size variation.


Subject(s)
Demography , Fishes/physiology , Homing Behavior/physiology , Invertebrates/physiology , Motor Activity/physiology , Animals , Fishes/genetics , Genetic Speciation , Genetics, Population , Geography , Invertebrates/genetics , Oceans and Seas , Selection, Genetic , Species Specificity
11.
Oecologia ; 145(3): 394-403, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16041615

ABSTRACT

Many species vary in their ecology across their geographic ranges in response to gradients in environmental conditions. Such variation, which can influence life history traits and subsequent demography of populations, usually occurs over large spatial scales. However, describing and understanding the causes of such variation is difficult precisely because it occurs over such large spatial scales. In this study, we document spatial variation in the ecology of a common reef fish, Stegastes beebei, in the Galápagos Islands and test a number of potential causal mechanisms. The pattern resembles that seen in latitudinal variation: individuals are larger, occur in higher densities, and live longer in the coldest region of the islands than those in the warmest region. However, in this system, demography varies among regional populations separated by <150 km. Preferred nutritious algae are more available in the cold region and comprise a greater proportion of the diet of fish in this region. Per gram reproductive effort appears to be strongly related to temperature, despite differences in the gross magnitude and timing of reproduction in different regions. A model of reproductive output suggests that fish in the warmest region are allocating a greater proportion of available energy to reproduction, resulting in apparent regional life history tradeoffs. Our data suggest that regional demographic differences in S. beebei may be driven by a combination of variation in food availability and an environmentally mediated life history tradeoff.


Subject(s)
Environment , Perciformes/physiology , Population Density , Reproduction/physiology , Animals , Body Size , Ecuador , Observation , Regression Analysis , Temperature
12.
Proc Biol Sci ; 272(1563): 585-91, 2005 Mar 22.
Article in English | MEDLINE | ID: mdl-16007745

ABSTRACT

We address the conflict in earlier results regarding the relationship between dispersal potential and range size. We examine all published pelagic larval duration data for tropical reef fishes. Larval duration is a convenient surrogate for dispersal potential in marine species that are sedentary as adults and that therefore only experience significant dispersal during their larval phase. Such extensive quantitative dispersal data are only available for fishes and thus we use a unique dataset to examine the relationship between dispersal potential and range size. We find that dispersal potential and range size are positively correlated only in the largest ocean basin, the Indo-Pacific, and that this pattern is driven primarily by the spatial distribution of habitat and dispersal barriers. Furthermore, the relationship strengthens at higher taxonomic levels, suggesting an evolutionary mechanism. We document a negative correlation between species richness and larval duration at the family level in the Indo-Pacific, implying that speciation rate may be negatively related to dispersal potential. If increased speciation rate within a taxonomic group results in smaller range sizes within that group, speciation rate could regulate the association between range size and dispersal potential.


Subject(s)
Demography , Environment , Perciformes/physiology , Age Factors , Animals , Geography , Larva/physiology , Linear Models , Oceans and Seas , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...