Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 316(Pt 2): 120663, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36395907

ABSTRACT

Since the industrial era, chemicals have been ubiquitous in worldwide ecosystems. Despite the discontinued release of highly toxic persistent organic pollutants (POPs) in the environment, the levels of some POPs are still being measured in the Canadian Arctic. These contaminants are of great concern due to their persistence, toxicity, and levels of bioaccumulation in food chains. Animals occupying top trophic positions in the Canadian Arctic, particularly polar bears, are exposed to these contaminants mainly through their diet. Our study investigated the levels of 30 metals (including total and methyl mercury) alkaline and alkaline earth metals, 15 polycyclic aromatic compounds and their alkyl congeners (PACs), 6 chlordanes (CHLs), and 20 polychlorinated biphenyls (PCBs), in 49 polar bears from the Canadian Arctic. Contaminant burden was measured in liver, muscle, and fat in bears of different sex, age, and locations. A principal component analysis did not distinguish differences between age and sex profiles for most contaminants. However, the concentrations measured and their distribution in the tissues confirm findings observed in past studies. This study highlights the importance of continual monitoring of polar bear health (e.g., newly detected PACs were measured within this study) and evaluating those impacts for the next generations of polar bears.


Subject(s)
Polycyclic Compounds , Ursidae , Animals , Ecosystem , Canada , Muscles , Liver
2.
Waste Manag ; 87: 119-124, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31109510

ABSTRACT

Cement kiln dust (CKD) is a highly saline waste by-product of the cement manufacturing process. Plant and aquatic communities may be negatively impacted by elevated concentrations of chloride in and around CKD landfills. Phytoextraction is currently being employed to remediate an area adjacent to a CKD landfill [Cl-]soil = 4730 ±â€¯5980 µg/g; n = 100) in Bath, ON using the resident accumulator halophyte, Phragmites australis (haplotype M). In this paper, composting is explored as a sustainable disposal option for dealing with salt-contaminated plant waste. After one growing season (May - September 2015), shoots of P. australis were harvested and placed in laboratory tumbling composters for 12 months. The plant biomass (3720 ±â€¯150 g) was reduced by 28 ±â€¯6%, and with thorough rinsing, a 49 ±â€¯18% reduction of chloride was achievable within the same time period. Composting was repeated outdoors at the field site in both closed tumbling composters, and open compost piles. In both cases, superior chloride concentration reductions of 87 ±â€¯6% and 89 ±â€¯8%, respectively were achieved. This is the first study to demonstrate that composting of harvested biomass following phytoextraction of salt can be used to sustainably manage plant waste.


Subject(s)
Composting , Dust , Poaceae , Salt-Tolerant Plants , Soil , Waste Disposal Facilities
3.
Assay Drug Dev Technol ; 16(8): 445-455, 2018 12.
Article in English | MEDLINE | ID: mdl-30481043

ABSTRACT

Mitochondrial permeability transition pore (mPTP) formation is well documented in isolated mitochondria. However, convincing detection of mPTP in whole cells remains elusive. In this study, we describe a high-throughput assay for Ca2+-activated mPTP opening in platelets using HyperCyt flow cytometry. In addition, we demonstrate that in several nucleated cells, using multiple approaches, the detection of cyclophilin D-dependent mPTP opening is highly challenging. Results with the mitochondrial-targeted Ca2+-sensing green fluorescent protein (mito-Case12) suggest the involvement of protein phosphatase 2B (PP2B; calcineurin) in regulating mitochondrial dynamics. Our results highlight the danger of relying on cyclosporine A alone as a pharmacological tool, and the need for comprehensive studies of mPTP in the cell.


Subject(s)
Blood Platelets/cytology , Blood Platelets/enzymology , Calcineurin/metabolism , High-Throughput Screening Assays , Mitochondria, Liver/metabolism , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/metabolism , Animals , HEK293 Cells , Humans , Mitochondrial Permeability Transition Pore , Rats , Tacrolimus/pharmacology
4.
Analyst ; 143(24): 5979-5986, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30310903

ABSTRACT

Isolated and monolayer expanded chondrocytes are not the ideal cell form to produce a cartilage matrix. In articular cartilage, each chondrocyte is surrounded by a 2-4 µm thick collagen VI-rich pericellular matrix (PCM) forming a chondron. Freshly extracted chondrons form a more cartilage-like extracellular matrix (ECM) than chondrocytes and their surrounding PCM is thought to maintain the chondrocyte phenotype. To regenerate articular cartilage, preserving and/or regenerating a functional PCM is essential. In this study, a highly biomimicking hyaluronic acid (HA) hydrogel was used as a 3-dimensional system to culture freshly isolated bovine chondrons (with an intact PCM) and chondrocytes (without a PCM) for up to 21 days. We assessed the HA hydrogel's capacity to maintain and potentially re-generate PCM formation by both biochemical and immunological analyses of the key components of the PCM. For the first time, synchrotron based Fourier transform infrared (SR-FTIR) microspectroscopy was utilised to reveal the dynamic process of PCM re-generation. At day 1, highly specific collagen VI staining was visible within chondron containing HA hydrogels. In contrast, collagen VI was absent at day 1 but punctate, focal staining increased during the culture period of chondrocyte containing HA hydrogels. Chondron containing HA hydrogels produced more collagen II and GAGs than the chondrocyte containing HA hydrogels. Principal component analysis (PCA) of spectra in fingerprint regions of the chondrocyte-containing constructs at day 7, 14 and 21 culturing showed clear spectral differences. The clusters of day 14 and day 21 samples were closer to the chondron samples, while the day 7 samples were closer to chondrocytes. PCA scores in the lipid region revealed no major differences between chondrocyte and chondron samples, but showed that the cultured chondrocyte samples at day 7, day 14 and day 21 clustered together. These data would indicate that SR-FTIR microspectroscopy can help to better understand the PCM formation and maturation in tissue engineered models, which involves subtle changes in collagen and aggrecan.


Subject(s)
Cellular Microenvironment/physiology , Chondrocytes/metabolism , Extracellular Matrix/physiology , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Animals , Cattle , Collagen Type VI/metabolism , Principal Component Analysis , Proteoglycans/metabolism , Spectroscopy, Fourier Transform Infrared/methods
5.
Analyst ; 143(23): 5711-5717, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30351313

ABSTRACT

Over the last few years, great effort has been placed on developing Fourier Transform Infrared (FTIR) microspectroscopy as a tool to help in the histopathological diagnosis of cancer. The ever increasing workload in pathology departments is calling for a technique that could identify the presence of cancer cells in cytology and tissue samples in an objective, fast and automated way. However, pathologists use glass slides which absorb infrared (IR) radiation thus removing important mid-IR spectral data in the fingerprint region (proteins, DNA, RNA; 1800 cm-1 to 900 cm-1). To this purpose, we hypothesised whether using thinner glass slides, i.e., glass coverslips, would allow us to obtain spectral data not only from the lipid region (3100 cm-1 to 2700 cm-1) but also from the fingerprint region. To this purpose, we studied peripheral blood mononuclear cells (PBMC), a leukaemia cell line (K562) and a lung cancer cell line (CALU-1). Cells were placed on DAKO coverslips and their FTIR spectra obtained at MIRAS beamline, Alba synchrotron light source (Barcelona, Catalonia). The data presented here not only shows for the first time that it is possible to obtain spectral data from most of the amide I region (1800 cm-1 to 1570 cm-1) of cells placed on glass coverslips but more important, principal component analysis was able to separate between the three types of cells for both the lipid and the amide I regions. The methodology here described is a further step in the application of FTIR microspectroscopy in histopathology departments.


Subject(s)
Glass/chemistry , Neoplasms/pathology , Spectroscopy, Fourier Transform Infrared/instrumentation , Cell Line, Tumor , Humans , Neoplasms/diagnosis , Principal Component Analysis
6.
Analyst ; 142(8): 1299-1307, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-27942623

ABSTRACT

Over the last few years, both synchrotron-based FTIR (S-FTIR) and Raman microspectroscopies have helped to better understand the effects of drugs on cancer cells. However, cancer is a mixture of cells with different sensitivity/resistance to drugs. Furthermore, the effects of drugs on cells produce both chemical and morphological changes, the latter could affect the spectra of cells incubated with drugs. Here, we successfully cloned sensitive and resistant leukaemia cells to nilotinib, a drug used in the management of leukaemia. This allowed both the study of a more uniform population and the study of sensitive and resistant cells prior to the addition of the drug with both S-FTIR and Raman microspectroscopies. The incubation with nilotinib produced changes in the S-FTIR and Raman spectra of both sensitive and resistant clones to nilotinib. Principal component analysis was able to distinguish between cells incubated in the absence or presence of the drug, even in the case of resistant clones. The latter would confirm that the spectral differences between the so-called resistant clonal cells prior to and after adding a drug might reside on those more or less sensitive cells that have been able to remain alive when they were collected to be studied with S-FTIR or Raman microspectroscopies. The data presented here indicate that the methodology of cell cloning can be applied to different types of malignant cells. This should facilitate the identification of spectral biomarkers of sensitivity/resistance to drugs. The next step would be a better assessment of sensitivity/resistance of leukaemia cells from patients which could guide clinicians to better tailor treatments to each individual patient.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia/pathology , Pyrimidines/pharmacology , Spectroscopy, Fourier Transform Infrared , Vibration , Feasibility Studies , Humans , K562 Cells , Leukemia/drug therapy
7.
Antioxid Redox Signal ; 23(15): 1251-3, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26566578

ABSTRACT

In his letter, Dr. Pick criticizes our use of relative values when representing the NOX2 inhibitory action of a novel small molecule (GSK2795039) in a semi-recombinant NOX2 membrane assay. To address this concern, we performed additional experiments using the superoxide inhibitable assays cytochrome C and water soluble tetrazolium salt (WST-1) reduction. In this letter, we document turnover values between 80 and 100 mol O2(•-)/s/mol cytochrome b558 in our semi-recombinant assay and confirmed that GSK2795039 inhibits the NOX2 isoform in the submicromolar range. Antioxid. Redox Signal. 23, 1251-1253.


Subject(s)
Aminopyridines/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Sulfonamides/pharmacology , Animals , Male
8.
Antioxid Redox Signal ; 23(5): 358-74, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26135714

ABSTRACT

AIMS: The NADPH oxidase (NOX) family of enzymes catalyzes the formation of reactive oxygen species (ROS). NOX enzymes not only have a key role in a variety of physiological processes but also contribute to oxidative stress in certain disease states. To date, while numerous small molecule inhibitors have been reported (in particular for NOX2), none have demonstrated inhibitory activity in vivo. As such, there is a need for the identification of improved NOX inhibitors to enable further evaluation of the biological functions of NOX enzymes in vivo as well as the therapeutic potential of NOX inhibition. In this study, both the in vitro and in vivo pharmacological profiles of GSK2795039, a novel NOX2 inhibitor, were characterized in comparison with other published NOX inhibitors. RESULTS: GSK2795039 inhibited both the formation of ROS and the utilization of the enzyme substrates, NADPH and oxygen, in a variety of semirecombinant cell-free and cell-based NOX2 assays. It inhibited NOX2 in an NADPH competitive manner and was selective over other NOX isoforms, xanthine oxidase, and endothelial nitric oxide synthase enzymes. Following systemic administration in mice, GSK2795039 abolished the production of ROS by activated NOX2 enzyme in a paw inflammation model. Furthermore, GSK2795039 showed activity in a murine model of acute pancreatitis, reducing the levels of serum amylase triggered by systemic injection of cerulein. INNOVATION AND CONCLUSIONS: GSK2795039 is a novel NOX2 inhibitor that is the first small molecule to demonstrate inhibition of the NOX2 enzyme in vivo.


Subject(s)
Aminopyridines/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Membrane Glycoproteins/metabolism , NADPH Oxidases/metabolism , Sulfonamides/pharmacology , Aminopyridines/chemistry , Animals , Cells, Cultured , Enzyme Inhibitors/therapeutic use , Male , Membrane Glycoproteins/antagonists & inhibitors , Mice, Inbred C57BL , NADPH Oxidase 2 , NADPH Oxidases/antagonists & inhibitors , Pancreatitis/drug therapy , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sulfonamides/chemistry
9.
J Pharmacol Exp Ther ; 350(1): 153-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24784567

ABSTRACT

Small molecule phosphodiesterase (PDE) 4 inhibitors have long been known to show therapeutic benefit in various preclinical models of psychiatric and neurologic diseases because of their ability to elevate cAMP in various cell types of the central nervous system. Despite the registration of the first PDE4 inhibitor, roflumilast, for the treatment of chronic obstructive pulmonary disease, the therapeutic potential of PDE4 inhibitors in neurologic diseases has never been fulfilled in the clinic due to severe dose-limiting side effects such as nausea and vomiting. In this study, we describe the detailed pharmacological characterization of GSK356278 [5-(5-((2,4-dimethylthiazol-5-yl)methyl)-1,3,4-oxadiazol-2-yl)-1-ethyl-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine], a potent, selective, and brain-penetrant PDE4 inhibitor that shows a superior therapeutic index to both rolipram and roflumilast in various preclinical species and has potential for further development in the clinic for the treatment of psychiatric and neurologic diseases. GSK356278 inhibited PDE4B enzyme activity with a pIC50 of 8.8 and bound to the high-affinity rolipram binding site with a pIC50 of 8.6. In preclinical models, the therapeutic index as defined in a rodent lung inflammation model versus rat pica feeding was >150 compared with 0.5 and 6.4 for rolipram and roflumilast, respectively. In a model of anxiety in common marmosets, the therapeutic index for GSK356278 was >10 versus <1 for rolipram. We also demonstrate that GSK356278 enhances performance in a model of executive function in cynomolgus macaques with no adverse effects, a therapeutic profile that supports further evaluation of GSK356278 in a clinical setting.


Subject(s)
Cerebral Cortex/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 4/drug effects , Nootropic Agents/pharmacology , Oxadiazoles/pharmacology , Phosphodiesterase 4 Inhibitors/adverse effects , Phosphodiesterase 4 Inhibitors/pharmacology , Thiazoles/pharmacology , Aminopyridines/pharmacology , Animals , Anti-Anxiety Agents/adverse effects , Anti-Anxiety Agents/pharmacokinetics , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Behavior, Animal/drug effects , Benzamides/pharmacology , Callithrix , Cerebral Cortex/drug effects , Cyclopropanes/pharmacology , Drug Evaluation, Preclinical , Ferrets , Inflammation/chemically induced , Inflammation/drug therapy , Isoenzymes/antagonists & inhibitors , Macaca fascicularis , Male , Nootropic Agents/adverse effects , Nootropic Agents/pharmacokinetics , Nootropic Agents/therapeutic use , Oxadiazoles/adverse effects , Oxadiazoles/pharmacokinetics , Oxadiazoles/therapeutic use , Phosphodiesterase 4 Inhibitors/pharmacokinetics , Pica/drug therapy , Rats , Rolipram/pharmacology , Thiazoles/adverse effects , Thiazoles/pharmacokinetics , Thiazoles/therapeutic use
10.
Neurosci Lett ; 503(3): 240-3, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21896308

ABSTRACT

The 5-HT(6) receptor subtype is predominantly expressed in the central nervous system, and preclinical evidence suggests that it plays a critical role in the regulation of molecular pathways underlying cognitive function. Patients with schizophrenia show cognitive impairment as a fundamental symptom, and it is proposed that the procognitive properties of some antipsychotics such as olanzapine and clozapine would be, in part, due to the central blockade of 5-HT(6) receptors. In this study, we characterized the brain 5-HT(6) receptor occupancy of olanzapine, clozapine and chlorpromazine in relation to their pharmacokinetic profiles using in vivo [(3)H]GSK215083 binding assay in rat brain. Oral administration of olanzapine (3mg/kg), clozapine (30mg/kg) and chlorpromazine (30mg/kg) produced significant 5-HT(6) receptor occupancy in the brain, inhibiting radioligand binding by 88, 97 and 81%, respectively. The blood concentrations required to achieve significant occupancy were clinically achievable (9.6, 26.9 and 98.6nM for olanzapine, clozapine and chlorpromazine, respectively). This data provides preclinical evidence to support the hypothesis that brain 5-HT(6) antagonism contributes to the procognitive properties of antipsychotic drugs such as olanzapine and clozapine.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/metabolism , Receptors, Serotonin/metabolism , Animals , Antipsychotic Agents/pharmacokinetics , Benzodiazepines/pharmacokinetics , Benzodiazepines/pharmacology , Brain/drug effects , Chlorpromazine/pharmacokinetics , Chlorpromazine/pharmacology , Clozapine/pharmacokinetics , Clozapine/pharmacology , Dose-Response Relationship, Drug , Male , Olanzapine , Piperazines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Serotonin/drug effects , Sulfonamides/pharmacology
11.
Sci Total Environ ; 408(9): 2060-7, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20172591

ABSTRACT

The waterfront of historic Kingston, Ontario (pop: 113,000) has been used for industrial activities for over a century. More than 40 industries have existed within the inner harbour, and while many of these industries are no longer present, the properties that they operated on remain as potential sources of persistent contamination to the present day, including mercury. To assess the extent and distribution of total mercury (THg) contamination, 21 sediment cores as well as pore water samples were collected within the inner harbour of Kingston. The spatial distribution of THg in the surface sediment is not homogenous; with concentrations in the surface sediment along the southwestern shoreline, adjacent to the former industrial properties, are significantly greater (p<0.01) than the rest of the inner harbour, and were above the Federal severe effect limit (>2000 microg/kg;) guideline for sediment. MeHg was detected in some sediment cores, and was found to have a significant, positive correlation with [THg] in the surface sediment (0-5 cm). THg was not found in storm sewer discharges, but was detected in terrestrial soil near the Kingston Rowing Club at a concentration of more than 4000 microg/kg. Significant [THg] was detected in runoff draining from contaminated shoreline soils, indicating that erosion from terrestrial sources may be an ongoing source of Hg to the sediment. It can be concluded that there is an increased risk over time to surrounding ecosystems where properties with historical contamination are not remediated until they are developed.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Industrial Waste/analysis , Mercury Compounds/analysis , Water Pollutants, Chemical/analysis , Fresh Water/chemistry , Humic Substances/analysis , Ontario , Rivers , Soil/analysis
12.
Life Sci ; 84(15-16): 558-62, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19302808

ABSTRACT

AIMS: 5-HT(6) receptor subtype is predominantly expressed in the brain, and preclinical evidence suggests its potential role in the cognitive function. Brain microdialysis studies demonstrated that 5-HT(6) antagonists enhance not only cholinergic but also monoaminergic neurotransmission, a property that may differentiate from acetylcholine esterase (AChE) inhibitors such as donepezil. In this study we compared the antidepressant-like effects of 5-HT(6) antagonists with donepezil to determine whether their different effects on monoamines are behaviorally relevant. MAIN METHODS: Selective 5-HT(6) antagonists (SB-399885 and SB-271046) and donepezil were evaluated in the rat forced swimming test since this is known to identify drugs such as antidepressants which can increase brain monoamine levels. Binding assay was undertaken by using [(125)I]SB-258585 to measure brain 5-HT(6) receptor occupancy. KEY FINDINGS: Systemic administration of SB-399885 (3 and 10 mg/kg, i.p.) and SB-271046 (10 and 30 mg/kg, i.p.) produced a significant reduction of immobility time in the rat forced swimming test with a similar profile in terms of 5-HT(6) receptor occupancy (62 and 96% for 3 and 10 mg/kg SB-399885 respectively; 56 and 84% for 10 and 30 mg/kg SB-271046 respectively). In contrast, donepezil (0.5 and 1 mg/kg i.p.) did not show any effects in this model. SIGNIFICANCE: These data suggest that 5-HT(6) antagonists, at doses corresponding to those occupy central 5-HT(6) receptors, could have an antidepressive effect in humans. This may differentiate 5-HT(6) antagonists from AChE inhibitors with respect to the mood control in the symptomatic treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease/psychology , Cognition/drug effects , Mood Disorders/drug therapy , Receptors, Serotonin/metabolism , Serotonin Antagonists/therapeutic use , Alzheimer Disease/metabolism , Animals , Behavior, Animal/drug effects , Male , Mood Disorders/etiology , Mood Disorders/metabolism , Mood Disorders/psychology , Piperazines/pharmacology , Piperazines/therapeutic use , Protein Binding , Radioligand Assay , Rats , Rats, Sprague-Dawley , Serotonin Antagonists/pharmacology , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Swimming , Thiophenes/pharmacology , Thiophenes/therapeutic use
13.
Schizophr Res ; 102(1-3): 283-94, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18400471

ABSTRACT

The NMDA receptor co-agonists D-serine and glycine are thought to contribute to glutamatergic dysfunction in schizophrenia. They are removed from the synapse by specific neuronal and glial transporters, the status of which is clearly relevant to theories of D-serine and glycine function in the disorder. D-serine is primarily transported by Asc-1, and glycine by GlyT1 but maybe also by SNAT2. As a first step to addressing this issue, we studied Asc-1, GlyT1 and SNAT2 expression in dorsolateral prefrontal cortex and cerebellum of 18 subjects with schizophrenia and 20 controls, using immunoblotting and in situ hybridization. Asc-1 protein and SNAT2 mRNA were decreased in schizophrenia in both regions. GlyT1 mRNA and protein, and Asc-1 mRNA, were not altered. Antipsychotic administration for 14 days did not alter expression of the genes in rat brain. Unchanged GlyT1 suggests that glycine transport is not markedly affected in schizophrenia, and therefore that increased synaptic removal is not the basis for the putative deficit in glycine modulation of NMDA receptors in the disorder. Lowered Asc-1 in schizophrenia implies that D-serine reuptake is reduced, perhaps as a response to decreased synaptic D-serine availability. However, this interpretation remains speculative. Further investigations will be valuable in the evaluation of these transporters as potential therapeutic targets in psychosis.


Subject(s)
Cerebellum/metabolism , Glutamates/physiology , Glycine Plasma Membrane Transport Proteins/metabolism , Glycine/metabolism , Prefrontal Cortex/metabolism , Schizophrenia/physiopathology , Serine/metabolism , Amino Acid Transport System A/genetics , Amino Acid Transport System A/metabolism , Animals , Antipsychotic Agents/pharmacology , Blotting, Western , Control Groups , Female , Gene Expression/drug effects , Glutamates/genetics , Glutamates/metabolism , Glycine/genetics , Glycine Plasma Membrane Transport Proteins/genetics , Humans , In Situ Hybridization , Male , Middle Aged , Neurons/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Serine/genetics , Synapses/drug effects , Synapses/metabolism
14.
J Neurochem ; 104(4): 903-13, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18233995

ABSTRACT

NMDA receptors are a subclass of ionotropic glutamate receptors. They are trafficked and/or clustered at synapses by the post-synaptic density (PSD)-95 membrane associated guanylate kinase (MAGUK) family of scaffolding proteins that associate with NMDA receptor NR2 subunits via their C-terminal glutamate serine (aspartate/glutamate) valine motifs. We have carried out a systematic study investigating in a heterologous expression system, the association of the four major NMDA receptor subtypes with the PSD-95 family of MAGUK proteins, chapsyn-110, PSD-95, synapse associated protein (SAP) 97 and SAP102. We report that although each PSD-95 MAGUK was shown to co-immunoprecipitate with NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptor subtypes, they elicited differential effects with regard to the enhancement of total NR2 subunit expression which then results in an increased cell surface expression of NMDA receptor subtypes. PSD-95 and chapsyn-110 enhanced NR2A and NR2B total expression which resulted in increased NR1/NR2A and NR1/NR2B receptor cell surface expression whereas SAP97 and SAP102 had no effect on total or cell surface expression of these subtypes. PSD-95, chapsyn-110, SAP97 and SAP102 had no effect on either total NR2C and NR2D subunit expression or cell surface NR1/NR2C and NR1/NR2D expression. A comparison of PSD-95alpha, PSD-95beta and PSD-95alpha(C3S,C5S) showed that PSD-95-enhanced cell surface expression of NR1/NR2A receptors was dependent upon the PSD-95 N-terminal C3,C5 cysteines. These observations support differential interaction of NMDA receptor subtypes with different PSD-95 MAGUK scaffolding proteins. This has implications for the stabilisation, turnover and compartmentalisation of NMDA receptor subtypes in neurones during development and in the mature brain.


Subject(s)
Guanylate Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Protein Subunits/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Cell Line , Disks Large Homolog 4 Protein , Guanylate Kinases/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Protein Subunits/genetics , Receptors, N-Methyl-D-Aspartate/genetics
15.
Eur J Neurosci ; 25(6): 1757-66, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17432963

ABSTRACT

In the mammalian central nervous system, transporter-mediated reuptake may be critical for terminating the neurotransmitter action of D-serine at the strychnine insensitive glycine site of the NMDA receptor. The Na(+) independent amino acid transporter alanine-serine-cysteine transporter 1 (Asc-1) has been proposed to account for synaptosomal d-serine uptake by virtue of its high affinity for D-serine and widespread neuronal expression throughout the brain. Here, we sought to validate the contribution of Asc-1 to D-serine uptake in mouse brain synaptosomes using Asc-1 gene knockout (KO) mice. Total [(3)H]D-serine uptake in forebrain and cerebellar synaptosomes from Asc-1 knockout mice was reduced to 34 +/- 5% and 22 +/- 3% of that observed in wildtype (WT) mice, respectively. When the Na(+) dependent transport components were removed by omission of Na(+) ions in the assay buffer, D-serine uptake in knockout mice was reduced to 8 +/- 1% and 3 +/- 1% of that measured in wildtype mice in forebrain and cerebellum, respectively, suggesting Asc-1 plays a major role in the Na(+) independent transport of D-serine. Potency determination of D-serine uptake showed that Asc-1 mediated rapid high affinity Na(+) independent uptake with an IC(50) of 19 +/- 1 microm. The remaining uptake was mediated predominantly via a low affinity Na(+) dependent transporter with an IC(50) of 670 +/- 300 microm that we propose is the glial alanine-serine-cysteine transporter 2 (ASCT2) transporter. The results presented reveal that Asc-1 is the only high affinity D-serine transporter in the mouse CNS and is the predominant mechanism for D-serine reuptake.


Subject(s)
Amino Acid Transport System y+/deficiency , Amino Acid Transport System y+/physiology , Central Nervous System/metabolism , Serine/metabolism , Amino Acid Transport Systems/deficiency , Amino Acid Transport Systems/metabolism , Animals , Biological Transport/drug effects , Biological Transport/genetics , Cells, Cultured , Central Nervous System/cytology , Dose-Response Relationship, Drug , Embryo, Mammalian , Mice , Mice, Inbred C57BL , Mice, Knockout , Serine/pharmacokinetics , Sodium/metabolism , Synaptosomes/metabolism , Synaptosomes/ultrastructure
16.
Mol Cell Neurosci ; 32(4): 324-34, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16843004

ABSTRACT

D-amino acid oxidase (DAO) degrades D-serine, a co-agonist at the NMDA receptor (NMDAR). Hypofunction of the NMDAR has been suggested to contribute to the pathophysiology of schizophrenia. Intriguingly, DAO has been recently identified as a risk factor for schizophrenia through genetic association studies. A naturally occurring mouse strain (ddY/DAO-) has been identified which lacks DAO activity. We have characterized this strain both behaviorally and biochemically to evaluate DAO as a target for schizophrenia. We have confirmed that this strain lacks DAO activity and shown for the first time it has increased occupancy of the NMDAR glycine site due to elevated extracellular D-serine levels and has enhanced NMDAR function in vivo. Furthermore, the ddY/DAO- strain displays behaviors which suggest that it will be a useful tool for evaluation of the clinical benefit of DAO inhibition in schizophrenia.


Subject(s)
Brain Chemistry/genetics , D-Amino-Acid Oxidase/deficiency , Mice, Knockout/physiology , Schizophrenia/physiopathology , Acoustic Stimulation/methods , Animals , Brain Chemistry/drug effects , Cyclic GMP/metabolism , Disease Models, Animal , Dose-Response Relationship, Radiation , Excitatory Amino Acid Antagonists/pharmacology , Extremities/physiology , Female , Male , Mice , Mice, Inbred Strains , Motor Activity/drug effects , Motor Activity/genetics , Neural Inhibition/genetics , Neurologic Examination/methods , Phencyclidine/administration & dosage , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Quinolones/pharmacology , Reaction Time/genetics , Reflex, Startle/genetics , Schizophrenia/metabolism , Sex Factors , Swimming/physiology
17.
Sci Total Environ ; 367(1): 354-66, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16434084

ABSTRACT

Atmospheric concentrations of elemental mercury (Hg(0)), reactive gaseous Hg (RGM), and particulate Hg (pHg) concentrations were measured in Yellowstone National Park (YNP), U.S.A. using high resolution, real time atmospheric mercury analyzers (Tekran 2537A, 1130, and 1135). A survey of Hg(0) concentrations at various locations within YNP showed that concentrations generally reflect global background concentrations of 1.5-2.0 ng m(-3), but a few specific locations associated with concentrated geothermal activity showed distinctly elevated Hg(0) concentrations (about 9.0 ng m(-3)). At the site of intensive study located centrally in YNP (Canyon Village), Hg(0) concentrations did not exceed 2.5 ng m(-3); concentrations of RGM were generally below detection limits of 0.88 pg m(-3) and never exceeded 5 pg m(-3). Concentrations of pHg ranged from below detection limits to close to 30 pg m(-3). RGM and pHg concentrations were not correlated with any criteria gases (SO(2), NO(x), O(3)); however pHg was weakly correlated with the concentration of atmospheric particles. We investigated three likely sources of Hg at the intensive monitoring site: numerous geothermal features scattered throughout YNP, re-suspended soils, and wildfires near or in YNP. We examined relationships between the chemical properties of aerosols (as measured using real time, single particle mass spectrometry; aerosol time-of-flight mass spectrometer; ATOFMS) and concentrations of atmospheric pHg. Based on the presence of particles with distinct chemical signatures of the wildfires, and the absence of signatures associated with the other sources, we concluded that wildfires in the park were the main source of aerosols and associated pHg to our sampling site.


Subject(s)
Air Pollutants/analysis , Air/analysis , Environmental Monitoring , Mercury/analysis , Aerosols , Air/standards , Gases , Particle Size , United States
18.
Neuroreport ; 16(16): 1735-9, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16237318

ABSTRACT

Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.


Subject(s)
Ganglia, Spinal/metabolism , Gene Expression Regulation/physiology , TRPV Cation Channels/metabolism , Animals , Blotting, Western/methods , Cell Line/metabolism , Cells, Cultured , Fluorescent Antibody Technique/methods , Ganglia, Spinal/cytology , Humans , Immunoprecipitation/methods , Male , Rats , Subcellular Fractions/metabolism , Transfection/methods
19.
Br J Pharmacol ; 146(5): 702-11, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16100528

ABSTRACT

1 Mammalian transient receptor potential (TRP) channels include the nonselective cation channel TRPV1, which is activated by a range of stimuli including low pH, vanilloids and heat. Previously, selective mutagenesis experiments identified an intracellular residue (S512Y) critical to discriminating between pH and vanilloid (capsaicin) gating of the rat TRPV1 receptor. 2 In this study, switching the equivalent residue in the human TRPV1 (which has some significant differences with the rat TRPV1) also rendered this channel relatively insensitive to activation by capsaicin and proved critical in determining the receptor's sensitivity to the putative endovanilloid N-arachidonoyl-dopamine (NADA), suggesting a similar mode of activation for these two agonists. 3 Potency of pH gating was reduced; however, voltage-dependent outward rectification properties of the pH-dependent current and gating by heat and pH sensitisation of the S512Y heat response remained unaffected. 4 Surprisingly, residual capsaicin gating was detected and could be sensitised by pH even in the presence of a competitive antagonist. Taken together, these findings indicate that effective functional interaction of capsaicin with the S512Y channel still occurred, although the vanilloid-dependent gating per se was severely compromised. 5 This observation provides additional evidence for capsaicin interacting at multiple sites, distinct from the S512 residue located close to the intracellular face of the pore.


Subject(s)
Mutation , TRPV Cation Channels/physiology , Animals , Base Sequence , CHO Cells , Capsaicin/pharmacology , Cricetinae , DNA Primers , Humans , Hydrogen-Ion Concentration , Ion Channel Gating/drug effects , TRPV Cation Channels/drug effects , TRPV Cation Channels/genetics
20.
J Comp Neurol ; 474(1): 24-42, 2004 Jun 14.
Article in English | MEDLINE | ID: mdl-15156577

ABSTRACT

Transient receptor potential channel proteins (TRPs) constitute a steadily growing family of ion channels with a range of purported functions. It has been demonstrated that TRPV2 is activated by moderate thermal stimuli and, in the rat, is expressed in medium to large diameter dorsal root ganglion neurons. In this study, antisera specific for the human TRPV2 homologue were raised and characterized for immunohistochemical use. Subsequently, thorough investigation was made of the localization of this cation channel in the macaque primate brain. TRPV2-immunoreactive material was highly restrictively localized to hypothalamic paraventricular, suprachiasmatic, and supraoptic nuclei. Confocal double- and triple-labeling studies demonstrated that TRPV2 immunoreactivity is preferentially localized to oxytocinergic and vasopressinergic neurons. Few, if any, cells in these regions expressed TRPV2 immunoreactivity in the absence of oxytocin immunoreactivity or vasopressin immunoreactivity. Expression in the paraventricular and supraoptic nuclei suggests that TRPV2 is likely to play a fundamental role in mediating cation transport in neurohypophysial neurons. TRPV2 has been shown to be translocated upon cell activation and neurons expressing TRPV2 immunoreactivity in vivo are among those known to engage in sporadic, intense activity. Taken together, these data suggest that this channel may play a vital role in mediating physiological activities associated with oxytocin and vasopressin release such as parturition, lactation, and diuresis. These data may also implicate the involvement of TRPV2 in disorders of the hypothalamic-pituitary-adrenal axis, including anxiety, depression, hypertension, and preterm labor.


Subject(s)
Calcium Channels/metabolism , Gene Expression , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Animals , Blotting, Western/methods , Brain/anatomy & histology , Brain/metabolism , Calcium Channels/immunology , Cell Line , Corticotropin-Releasing Hormone/metabolism , Embryo, Mammalian , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoblotting/methods , Immunohistochemistry/methods , Macaca fascicularis , Microscopy, Confocal/methods , Oxytocin/metabolism , Radioimmunoassay/methods , TRPV Cation Channels , Transfection/methods , Vasopressins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...