Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 297
Filter
1.
Diabetes ; 73(6): 849-855, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38768365

ABSTRACT

The canonical model of glucose-induced increase in insulin secretion involves the metabolism of glucose via glycolysis and the citrate cycle, resulting in increased ATP synthesis by the respiratory chain and the closure of ATP-sensitive K+ (KATP) channels. The resulting plasma membrane depolarization, followed by Ca2+ influx through L-type Ca2+ channels, then induces insulin granule fusion. Merrins and colleagues have recently proposed an alternative model whereby KATP channels are controlled by pyruvate kinase, using glycolytic and mitochondrial phosphoenolpyruvate (PEP) to generate microdomains of high ATP/ADP immediately adjacent to KATP channels. This model presents several challenges. First, how mitochondrially generated PEP, but not ATP produced abundantly by the mitochondrial F1F0-ATP synthase, can gain access to the proposed microdomains is unclear. Second, ATP/ADP fluctuations imaged immediately beneath the plasma membrane closely resemble those in the bulk cytosol. Third, ADP privation of the respiratory chain at high glucose, suggested to drive alternating, phased-locked generation by mitochondria of ATP or PEP, has yet to be directly demonstrated. Finally, the approaches used to explore these questions may be complicated by off-target effects. We suggest instead that Ca2+ changes, well known to affect both ATP generation and consumption, likely drive cytosolic ATP/ADP oscillations that in turn regulate KATP channels and membrane potential. Thus, it remains to be demonstrated that a new model is required to replace the existing, mitochondrial bioenergetics-based model.


Subject(s)
Glucose , Insulin-Secreting Cells , KATP Channels , Insulin-Secreting Cells/metabolism , KATP Channels/metabolism , Glucose/metabolism , Humans , Animals , Adenosine Triphosphate/metabolism , Mitochondria/metabolism , Insulin/metabolism , Adenosine Diphosphate/metabolism , Models, Biological , Insulin Secretion/physiology
2.
bioRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712064

ABSTRACT

Despite recent therapeutic advances, achieving optimal glycaemic control remains a challenge in managing Type 2 Diabetes (T2D). Sodium-glucose co-transporter type 2 (SGLT2) inhibitors have emerged as effective treatments by promoting urinary glucose excretion. However, the full scope of their mechanisms extends beyond glycaemic control. At present, their immunometabolic effects remain elusive. To investigate the effects of SGLT2 inhibition or deletion, we compared the metabolic and immune phenotype between high fat diet-fed control, chronically dapagliflozin-treated mice and total-body SGLT2/Slc5a2 knockout mice. SGLT2 null mice exhibited superior glucose tolerance and insulin sensitivity compared to control or dapagliflozin-treated mice, independent of glycosuria and body weight. Moreover, SGLT2 null mice demonstrated physiological regulation of corticosterone secretion, with lowered morning levels compared to control mice. Systemic cytokine profiling also unveiled significant alterations in inflammatory mediators, particularly interleukin 6 (IL-6). Furthermore, unbiased proteomic analysis demonstrated downregulation of acute-phase proteins and upregulation of glutathione-related proteins, suggesting a role in the modulation of antioxidant responses. Conversely, IL-6 increased SGLT2 expression in kidney HK2 cells suggesting a role for cytokines in the effects of hyperglycemia. Collectively, our study elucidates a potential interplay between SGLT2 activity, immune modulation, and metabolic homeostasis.

3.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798508

ABSTRACT

Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic ß-cell identity and function. Elimination of Lkb1 from the ß-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of ß cell- selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from ß-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors important for ß-cell identity, such as FOXA, MAFA or RFX6 and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates ß-cell identity and function.

4.
Front Endocrinol (Lausanne) ; 15: 1359147, 2024.
Article in English | MEDLINE | ID: mdl-38586449

ABSTRACT

Introduction: Proinflammatory cytokines are implicated in pancreatic ß cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of nonsense-mediated RNA decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß cells. Methods: A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3, or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. The gain- or loss-of-function of two key NMD components, UPF3B and UPF2, is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Results: Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß cells. These effects are found to involve ER stress and are associated with the downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing raise or lower Cyt-induced cell death, respectively, in EndoC-ßH3 cells and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increases alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in the extracellular matrix (ECM), including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitizes ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signaling, potentially serving as a protective response against Cyt-induced NMD component expression. Conclusion: Our findings highlight the central importance of RNA turnover in ß cell responses to inflammatory stress.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Insulins , Humans , Rats , Animals , RNA/metabolism , Insulin-Secreting Cells/metabolism , Cytokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Nonsense Mediated mRNA Decay , Protein Isoforms/genetics , Protein Isoforms/metabolism , Insulins/metabolism , RNA-Binding Proteins/genetics
5.
Cell Rep ; 43(4): 114047, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38607916

ABSTRACT

Using 13C6 glucose labeling coupled to gas chromatography-mass spectrometry and 2D 1H-13C heteronuclear single quantum coherence NMR spectroscopy, we have obtained a comparative high-resolution map of glucose fate underpinning ß cell function. In both mouse and human islets, the contribution of glucose to the tricarboxylic acid (TCA) cycle is similar. Pyruvate fueling of the TCA cycle is primarily mediated by the activity of pyruvate dehydrogenase, with lower flux through pyruvate carboxylase. While the conversion of pyruvate to lactate by lactate dehydrogenase (LDH) can be detected in islets of both species, lactate accumulation is 6-fold higher in human islets. Human islets express LDH, with low-moderate LDHA expression and ß cell-specific LDHB expression. LDHB inhibition amplifies LDHA-dependent lactate generation in mouse and human ß cells and increases basal insulin release. Lastly, cis-instrument Mendelian randomization shows that low LDHB expression levels correlate with elevated fasting insulin in humans. Thus, LDHB limits lactate generation in ß cells to maintain appropriate insulin release.


Subject(s)
Insulin Secretion , Insulin-Secreting Cells , L-Lactate Dehydrogenase , Lactic Acid , Humans , Insulin-Secreting Cells/metabolism , Animals , L-Lactate Dehydrogenase/metabolism , Mice , Lactic Acid/metabolism , Glucose/metabolism , Insulin/metabolism , Isoenzymes/metabolism , Citric Acid Cycle , Mice, Inbred C57BL , Male
6.
FASEB J ; 38(8): e23610, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38661000

ABSTRACT

Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, we examined multiple variants that influence SLC30A8 allele-specific expression. Epigenomic mapping has previously identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighboring genes. Here, we show that deletion of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-ßH3 cells lowers the expression of SLC30A8 and several neighboring genes and improves glucose-stimulated insulin secretion. While downregulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21, or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.


Subject(s)
Diabetes Mellitus, Type 2 , Enhancer Elements, Genetic , Insulin-Secreting Cells , Zinc Transporter 8 , Humans , Zinc Transporter 8/genetics , Zinc Transporter 8/metabolism , Insulin-Secreting Cells/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Cell Survival/genetics , Genetic Variation , Insulin/metabolism , Cell Line
7.
Front Endocrinol (Lausanne) ; 15: 1350796, 2024.
Article in English | MEDLINE | ID: mdl-38510703

ABSTRACT

Introduction: Type 2 diabetes (T2D) onset, progression and outcomes differ substantially between individuals. Multi-omics analyses may allow a deeper understanding of these differences and ultimately facilitate personalised treatments. Here, in an unsupervised "bottom-up" approach, we attempt to group T2D patients based solely on -omics data generated from plasma. Methods: Circulating plasma lipidomic and proteomic data from two independent clinical cohorts, Hoorn Diabetes Care System (DCS) and Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS), were analysed using Similarity Network Fusion. The resulting patient network was analysed with Logistic and Cox regression modelling to explore relationships between plasma -omic profiles and clinical characteristics. Results: From a total of 1,134 subjects in the two cohorts, levels of 180 circulating plasma lipids and 1195 proteins were used to separate patients into two subgroups. These differed in terms of glycaemic deterioration (Hazard Ratio=0.56;0.73), insulin sensitivity and secretion (C-peptide, p=3.7e-11;2.5e-06, DCS and GoDARTS, respectively; Homeostatic model assessment 2 (HOMA2)-B; -IR; -S, p=0.0008;4.2e-11;1.1e-09, only in DCS). The main molecular signatures separating the two groups included triacylglycerols, sphingomyelin, testican-1 and interleukin 18 receptor. Conclusions: Using an unsupervised network-based fusion method on plasma lipidomics and proteomics data from two independent cohorts, we were able to identify two subgroups of T2D patients differing in terms of disease severity. The molecular signatures identified within these subgroups provide insights into disease mechanisms and possibly new prognostic markers for T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/metabolism , Proteomics , Multiomics
8.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512414

ABSTRACT

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Subject(s)
CpG Islands , DNA Methylation , Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Animals , Mice , CpG Islands/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Transgenic , DNA Methyltransferase 3A/metabolism , Humans , Insulin/metabolism , Insulin Secretion/physiology
9.
Diabetologia ; 67(5): 885-894, 2024 May.
Article in English | MEDLINE | ID: mdl-38374450

ABSTRACT

AIMS/HYPOTHESIS: People with type 2 diabetes are heterogeneous in their disease trajectory, with some progressing more quickly to insulin initiation than others. Although classical biomarkers such as age, HbA1c and diabetes duration are associated with glycaemic progression, it is unclear how well such variables predict insulin initiation or requirement and whether newly identified markers have added predictive value. METHODS: In two prospective cohort studies as part of IMI-RHAPSODY, we investigated whether clinical variables and three types of molecular markers (metabolites, lipids, proteins) can predict time to insulin requirement using different machine learning approaches (lasso, ridge, GRridge, random forest). Clinical variables included age, sex, HbA1c, HDL-cholesterol and C-peptide. Models were run with unpenalised clinical variables (i.e. always included in the model without weights) or penalised clinical variables, or without clinical variables. Model development was performed in one cohort and the model was applied in a second cohort. Model performance was evaluated using Harrel's C statistic. RESULTS: Of the 585 individuals from the Hoorn Diabetes Care System (DCS) cohort, 69 required insulin during follow-up (1.0-11.4 years); of the 571 individuals in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) cohort, 175 required insulin during follow-up (0.3-11.8 years). Overall, the clinical variables and proteins were selected in the different models most often, followed by the metabolites. The most frequently selected clinical variables were HbA1c (18 of the 36 models, 50%), age (15 models, 41.2%) and C-peptide (15 models, 41.2%). Base models (age, sex, BMI, HbA1c) including only clinical variables performed moderately in both the DCS discovery cohort (C statistic 0.71 [95% CI 0.64, 0.79]) and the GoDARTS replication cohort (C 0.71 [95% CI 0.69, 0.75]). A more extensive model including HDL-cholesterol and C-peptide performed better in both cohorts (DCS, C 0.74 [95% CI 0.67, 0.81]; GoDARTS, C 0.73 [95% CI 0.69, 0.77]). Two proteins, lactadherin and proto-oncogene tyrosine-protein kinase receptor, were most consistently selected and slightly improved model performance. CONCLUSIONS/INTERPRETATION: Using machine learning approaches, we show that insulin requirement risk can be modestly well predicted by predominantly clinical variables. Inclusion of molecular markers improves the prognostic performance beyond that of clinical variables by up to 5%. Such prognostic models could be useful for identifying people with diabetes at high risk of progressing quickly to treatment intensification. DATA AVAILABILITY: Summary statistics of lipidomic, proteomic and metabolomic data are available from a Shiny dashboard at https://rhapdata-app.vital-it.ch .


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/metabolism , Prospective Studies , C-Peptide , Proteomics , Insulin/therapeutic use , Biomarkers , Machine Learning , Cholesterol
10.
J Vis Exp ; (204)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38372369

ABSTRACT

Human pluripotent stem cells (hPSCs) can differentiate into any kind of cell, making them an excellent alternative source of human pancreatic ß-cells. hPSCs can either be embryonic stem cells (hESCs) derived from the blastocyst or induced pluripotent cells (hiPSCs) generated directly from somatic cells using a reprogramming process. Here a video-based protocol is presented to outline the optimal culture and passage conditions for hPSCs, prior to their differentiation and subsequent generation of insulin-producing pancreatic cells. This methodology follows the six-stage process for ß-cell directed differentiation, wherein hPSCs differentiate into definitive endoderm (DE), primitive gut tube, posterior foregut fate, pancreatic progenitors, pancreatic endocrine progenitors, and ultimately pancreatic ß-cells. It is noteworthy that this differentiation methodology takes a period of 27 days to generate human pancreatic ß-cells. The potential of insulin secretion was evaluated through two experiments, which included immunostaining and glucose-stimulated insulin secretion.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Pluripotent Stem Cells , Humans , Cell Differentiation , Pancreas
11.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38187722

ABSTRACT

Proinflammatory cytokines are implicated in pancreatic ß-cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of Nonsense-Mediated RNA Decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß-cells. A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3 or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. Gain- or loss-of function of two key NMD components UPF3B and UPF2 is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß-cells. These effects are found to involve ER stress and are associated with downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing, raises or lowers Cyt-induced cell death, respectively, in EndoC-ßH3 cells, and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increase alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in extracellular matrix (ECM) including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitises ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signalling, potentially serving as a protective response against Cyt-induced NMD component expression. Our findings highlight the central importance of RNA turnover in ß-cell responses to inflammatory stress.

12.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076935

ABSTRACT

Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods: Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, reminiscent of recently-described "ßHI" cells and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may thus contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.

13.
EMBO Mol Med ; 15(12): e17928, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37933577

ABSTRACT

Loss of pancreatic beta cells is the central feature of all forms of diabetes. Current therapies fail to halt the declined beta cell mass. Thus, strategies to preserve beta cells are imperatively needed. In this study, we identified paired box 6 (PAX6) as a critical regulator of beta cell survival. Under diabetic conditions, the human beta cell line EndoC-ßH1, db/db mouse and human islets displayed dampened insulin and incretin signalings and reduced beta cell survival, which were alleviated by PAX6 overexpression. Adeno-associated virus (AAV)-mediated PAX6 overexpression in beta cells of streptozotocin-induced diabetic mice and db/db mice led to a sustained maintenance of glucose homeostasis. AAV-PAX6 transduction in human islets reduced islet graft loss and improved glycemic control after transplantation into immunodeficient diabetic mice. Our study highlights a previously unappreciated role for PAX6 in beta cell survival and raises the possibility that ex vivo PAX6 gene transfer into islets prior to transplantation might enhance islet graft function and transplantation outcome.


Subject(s)
Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Islets of Langerhans Transplantation , Islets of Langerhans , Mice , Humans , Animals , Islets of Langerhans/metabolism , Diabetes Mellitus, Experimental/therapy , Insulin/metabolism
14.
Front Endocrinol (Lausanne) ; 14: 1171933, 2023.
Article in English | MEDLINE | ID: mdl-37396167

ABSTRACT

Introduction: Common variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas]. Methods: Following intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 µl) in wild-type (WT), heterozygous (R138X+/-), and homozygous (R138X+/+) mutant mice (14-15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS. Results: Our findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/- mice, with smaller increases observed in R138X+/+ mice. Discussion: These data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic ß-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion.


Subject(s)
Cation Transport Proteins , Diabetes Mellitus, Type 2 , Animals , Humans , Mice , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Manganese/metabolism , Pancreas/diagnostic imaging , Pancreas/metabolism , Pancreatic Hormones/metabolism , Positron-Emission Tomography , Zinc/metabolism , Zinc Transporter 8/genetics
15.
bioRxiv ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37502937

ABSTRACT

Variants at the SLC30A8 locus are associated with type 2 diabetes (T2D) risk. The lead variant, rs13266634, encodes an amino acid change, Arg325Trp (R325W), at the C-terminus of the secretory granule-enriched zinc transporter, ZnT8. Although this protein-coding variant was previously thought to be the sole driver of T2D risk at this locus, recent studies have provided evidence for lowered expression of SLC30A8 mRNA in protective allele carriers. In the present study, combined allele-specific expression (cASE) analysis in human islets revealed multiple variants that influence SLC30A8 expression. Epigenomic mapping identified an islet-selective enhancer cluster at the SLC30A8 locus, hosting multiple T2D risk and cASE associations, which is spatially associated with the SLC30A8 promoter and additional neighbouring genes. Deletions of variant-bearing enhancer regions using CRISPR-Cas9 in human-derived EndoC-ßH3 cells lowered the expression of SLC30A8 and several neighbouring genes, and improved insulin secretion. Whilst down-regulation of SLC30A8 had no effect on beta cell survival, loss of UTP23, RAD21 or MED30 markedly reduced cell viability. Although eQTL or cASE analyses in human islets did not support the association between these additional genes and diabetes risk, the transcriptional regulator JQ1 lowered the expression of multiple genes at the SLC30A8 locus and enhanced stimulated insulin secretion.

16.
Diabetologia ; 66(11): 1971-1982, 2023 11.
Article in English | MEDLINE | ID: mdl-37488322

ABSTRACT

Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/metabolism , Autoimmunity/physiology , Islets of Langerhans/metabolism , Genetic Predisposition to Disease
17.
Biochem J ; 480(11): 773-789, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37284792

ABSTRACT

Glucose-regulated insulin secretion becomes defective in all forms of diabetes. The signaling mechanisms through which the sugar acts on the ensemble of beta cells within the islet remain a vigorous area of research after more than 60 years. Here, we focus firstly on the role that the privileged oxidative metabolism of glucose plays in glucose detection, discussing the importance of 'disallowing' in the beta cell the expression of genes including Lactate dehydrogenase (Ldha) and the lactate transporter Mct1/Slc16a1 to restrict other metabolic fates for glucose. We next explore the regulation of mitochondrial metabolism by Ca2+ and its possible role in sustaining glucose signaling towards insulin secretion. Finally, we discuss in depth the importance of mitochondrial structure and dynamics in the beta cell, and their potential for therapeutic targeting by incretin hormones or direct regulators of mitochondrial fusion. This review, and the 2023 Sir Philip Randle Lecture which GAR will give at the Islet Study Group meeting in Vancouver, Canada in June 2023, honor the foundational, and sometimes under-appreciated, contributions made by Professor Randle and his colleagues towards our understanding of the regulation of insulin secretion.


Subject(s)
Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Insulin Secretion , Mitochondria/metabolism , Glucose/metabolism
18.
Sci Adv ; 9(18): eadf7737, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134170

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) is a major type 2 diabetes therapeutic target. Stimulated GLP-1Rs are rapidly desensitized by ß-arrestins, scaffolding proteins that not only terminate G protein interactions but also act as independent signaling mediators. Here, we have assessed in vivo glycemic responses to the pharmacological GLP-1R agonist exendin-4 in adult ß cell-specific ß-arrestin 2 knockout (KO) mice. KOs displayed a sex-dimorphic phenotype consisting of weaker acute responses that improved 6 hours after agonist injection. Similar effects were observed for semaglutide and tirzepatide but not with biased agonist exendin-phe1. Acute cyclic adenosine 5'-monophosphate increases were impaired, but desensitization reduced in KO islets. The former defect was attributed to enhanced ß-arrestin 1 and phosphodiesterase 4 activities, while reduced desensitization co-occurred with impaired GLP-1R recycling and lysosomal targeting, increased trans-Golgi network signaling, and reduced GLP-1R ubiquitination. This study has unveiled fundamental aspects of GLP-1R response regulation with direct application to the rational design of GLP-1R-targeting therapeutics.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Mice , beta-Arrestin 2/genetics , beta-Arrestin 2/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Mice, Knockout
19.
Diabetes Obes Metab ; 25(8): 2105-2119, 2023 08.
Article in English | MEDLINE | ID: mdl-37039251

ABSTRACT

AIM: To determine the kinase activity profiles of human pancreatic beta cells downstream of glucagon-like peptide-1 receptor (GLP-1R) balanced versus biased agonist stimulations. MATERIALS AND METHODS: This study analysed the kinomic profiles of human EndoC-ßh1 cells following vehicle and GLP-1R stimulation with the pharmacological agonist exendin-4, as well as exendin-4-based biased derivatives exendin-phe1 and exendin-asp3 for acute (10-minute) versus sustained (120-minute) responses, using PamChip protein tyrosine kinase and serine/threonine kinase assays. The raw data were filtered and normalized using BioNavigator. The kinase analyses were conducted with R, mainly including kinase-substrate mapping and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS: The present analysis reveals that kinomic responses are distinct for acute versus sustained GLP-1R agonist exposure, with individual responses associated with agonists presenting specific bias profiles. According to pathway analysis, several kinases, including JNKs, PKCs, INSR and LKB1, are important GLP-1R signalling mediators, constituting potential targets for further research on biased GLP-1R downstream signalling. CONCLUSION: The results from this study suggest that differentially biased exendin-phe1 and exendin-asp3 can modulate distinct kinase interaction networks. Further understanding of these mechanisms will have important implications for the selection of appropriate anti-type 2 diabetes therapies with optimized downstream kinomic profiles.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Insulin-Secreting Cells , Humans , Exenatide/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Insulin-Secreting Cells/metabolism , Signal Transduction
20.
Front Endocrinol (Lausanne) ; 14: 1092104, 2023.
Article in English | MEDLINE | ID: mdl-37025411

ABSTRACT

Background: SARS-CoV-2 infection during pregnancy may cause adverse maternal, neonatal and placental outcomes. While tissue hypoxia is often reported in COVID-19 patients, pregnant women with anemia are suspected to be more prone to placental hypoxia-related injuries. Methods: This hospital-based cross-sectional study was conducted between August-November 2021, during COVID-19 second wave in India. Term pregnant women (N=212) admitted to hospital for delivery were enrolled consecutively. Since hospital admission mandated negative RT-PCR test for SARS-CoV-2 virus, none had active infection. Data on socio-demography, COVID-19 history, maternal, obstetric, and neonatal outcomes were recorded. Pre-delivery maternal and post-delivery cord blood samples were tested for hematological parameters and SARS-CoV-2 IgG. Placentae were studied for histology. Results: Of 212 women, 122 (58%) were seropositive for SARS-CoV-2 IgG, but none reported COVID-19 history; 134 (63.2%) were anemic. In seropositive women, hemoglobin (p=0.04), total WBC (p=0.009), lymphocytes (p=0.005) and neutrophils (p=0.02) were significantly higher, while ferritin was high, but not significant and neutrophils to lymphocytes (p=0.12) and platelets to lymphocytes ratios (p=0.03) were lower. Neonatal outcomes were similar. All RBC parameters and serum ferritin were significantly lower in anemic mothers but not in cord blood, except RDW that was significantly higher in both, maternal (p=0.007) and cord (p=0.008) blood from seropositive anemic group compared to other groups. Placental histology showed significant increase in villous hypervascularity (p=0.000), dilated villous capillaries (p=0.000), and syncytiotrophoblasts (p=0.02) in seropositive group, typically suggesting placental hypoxia. Maternal anemia was not associated with any histological parameters. Univariate and multivariate logistic regression analyses of placental histopathological adverse outcomes showed strong association with SARS-CoV-2 seropositivity but not with maternal anemia. When adjusted for several covariates, including anemia, SARS-CoV-2 seropositivity emerged as independent risk factor for severe chorangiosis (AOR 8.74, 95% CI 3.51-21.76, p<0.000), dilated blood vessels (AOR 12.74, 95% CI 5.46-29.75, p<0.000), syncytiotrophoblasts (AOR 2.86, 95% CI 1.36-5.99, p=0.005) and villus agglutination (AOR 9.27, 95% CI 3.68-23.32, p<0.000). Conclusion: Asymptomatic COVID-19 during pregnancy seemed to be associated with various abnormal placental histopathologic changes related to placental hypoxia independent of maternal anemia status. Our data supports an independent role of SARS-CoV-2 in causing placental hypoxia in pregnant women.


Subject(s)
Anemia , COVID-19 , Pregnancy , Infant, Newborn , Humans , Female , COVID-19/complications , COVID-19/epidemiology , Placenta , Pregnant Women , Cross-Sectional Studies , SARS-CoV-2 , Tertiary Care Centers , Anemia/epidemiology , Anemia/etiology , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...