Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(19): 15968-74, 2001 May 11.
Article in English | MEDLINE | ID: mdl-11279153

ABSTRACT

Iron-molybdenum cofactor (FeMo-co) biosynthesis involves the participation of several proteins. We have used (55)Fe-labeled NifB-co, the specific iron and sulfur donor to FeMo-co, to investigate the accumulation of protein-bound precursors of FeMo-co. The (55)Fe label from radiolabeled NifB-co became associated with two major protein bands when the in vitro FeMo-co synthesis reaction was carried out with the extract of an Azotobacter vinelandii mutant lacking apodinitrogenase. One of the bands, termed (55)Fe-labeled upper band, was purified and shown to be NifH by immunoblot analysis. The (55)Fe-labeled lower band was identified as NifX by N-terminal sequencing. NifX purified from an A. vinelandii nifB strain showed a different electrophoretic mobility on anoxic native gels than did NifX with the FeMo-co precursor bound.


Subject(s)
Azotobacter vinelandii/metabolism , Bacterial Proteins/metabolism , Molybdoferredoxin/biosynthesis , Oxidoreductases/metabolism , Azotobacter vinelandii/genetics , Bacterial Proteins/chemistry , Genotype , Iron/metabolism , Iron Radioisotopes , Molecular Chaperones/metabolism , Nitrogenase/metabolism
2.
J Biol Chem ; 276(6): 4522-6, 2001 Feb 09.
Article in English | MEDLINE | ID: mdl-11053414

ABSTRACT

A vanadium- and iron-containing cluster has been shown previously to accumulate on VnfX in the Azotobacter vinelandii mutant strain CA11.1 (DeltanifHDKvnfDGK::spc). In the present study, we show the homocitrate-dependent transfer of (49)V label from VnfX to nif-apodinitrogenase in vitro. This transfer of radiolabel correlates with acquisition of acetylene reduction activity. Acetylene is reduced both to ethylene and ethane by the hybrid holodinitrogenase so formed, a feature characteristic of alternative nitrogenases. Structural analogues of homocitrate prevent the acetylene reduction ability of the resulting dinitrogenase. Addition of NifB cofactor (-co) or a source of vanadium (Na(3)VO(4) or VCl(3)) does not increase nitrogenase activity. Our results suggest that there is in vitro incorporation of homocitrate into the V-Fe-S cluster associated with VnfX and that the completed cluster can be inserted into nif-apodinitrogenase. The homocitrate incorporation reaction and the insertion of the cluster into nif-apodinitrogenase (alpha(2)beta(2)gamma(2)) do not require MgATP. Attempts to achieve FeV-co synthesis using extracts of other FeV-co-negative mutants were unsuccessful, showing that earlier steps in FeV-co synthesis, such as the steps requiring VnfNE or VnfH, do not occur in vitro.


Subject(s)
Bacterial Proteins/metabolism , Metalloproteins/metabolism , Nitrogenase/metabolism , Tricarboxylic Acids/metabolism , Azotobacter vinelandii/enzymology , Azotobacter vinelandii/metabolism
3.
J Biol Chem ; 274(25): 18087-92, 1999 Jun 18.
Article in English | MEDLINE | ID: mdl-10364262

ABSTRACT

The vnf-encoded nitrogenase from Azotobacter vinelandii contains an iron-vanadium cofactor (FeV-co) in its active site. Little is known about the synthesis pathway of FeV-co, other than that some of the gene products required are also involved in the synthesis of the iron-molybdenum cofactor (FeMo-co) of the widely studied molybdenum-dinitrogenase. We have found that VnfX, the gene product of one of the genes contained in the vnf-regulon, accumulates iron and vanadium in a novel V-Fe cluster during synthesis of FeV-co. The electron paramagnetic resonance (EPR) and metal analyses of the V-Fe cluster accumulated on VnfX are consistent with a VFe7-8Sx precursor of FeV-co. The EPR spectrum of VnfX with the V-Fe cluster bound strongly resembles that of isolated FeV-co and a model VFe3S4 compound. The V-Fe cluster accumulating on VnfX does not contain homocitrate. No accumulation of V-Fe cluster on VnfX was observed in strains with deletions in genes known to be involved in the early steps of FeV-co synthesis, suggesting that it corresponds to a precursor of FeV-co. VnfX purified from a nifB strain incapable of FeV-co synthesis has a different electrophoretic mobility in native anoxic gels than does VnfX, which has the V-Fe cluster bound. NifB-co, the Fe and S precursor of FeMo-co (and presumably FeV-co), binds to VnfX purified from the nifB strain, producing a shift in its electrophoretic mobility on anoxic native gels. The data suggest that a precursor of FeV-co that contains vanadium and iron accumulates on VnfX, and thus, VnfX is involved in the synthesis of FeV-co.


Subject(s)
Azotobacter vinelandii/enzymology , Metalloproteins/biosynthesis , Nitrogenase/chemistry , Bacterial Proteins/chemistry , Binding Sites , Electron Spin Resonance Spectroscopy , Iron/chemistry , Metalloproteins/chemistry , Molybdenum/chemistry , Molybdoferredoxin/biosynthesis , Molybdoferredoxin/chemistry , Tricarboxylic Acids/analysis , Vanadium/chemistry
4.
Appl Environ Microbiol ; 62(10): 3890-3, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8967777

ABSTRACT

High-molecular-weight polymers were produced by a crude concentrated supernatant from ligninolytic Phanerochaete chrysosporium cultures in a reaction mixture containing pentachlorophenol and a humic acid precursor (ferulic acid) in the presence of a detergent and H2O2. Pure manganese peroxidase, lignin peroxidase, and laccase were also shown to catalyze the reaction.


Subject(s)
Basidiomycota/enzymology , Coumaric Acids/metabolism , Environmental Pollutants/metabolism , Lignin/metabolism , Pentachlorophenol/metabolism , Polymers/metabolism , Biodegradation, Environmental , Detergents , Glucosides , Humic Substances , Hydrogen Peroxide , Hydrogen-Ion Concentration , Laccase , Oxidoreductases/metabolism , Peroxidases/metabolism , Soil
5.
Appl Environ Microbiol ; 60(2): 599-605, 1994 Feb.
Article in English | MEDLINE | ID: mdl-8135519

ABSTRACT

The ligninolytic enzymes produced by the white rot fungus Phanerochaete sordida in liquid culture were studied. Only manganese peroxidase (MnP) activity could be detected in the supernatant liquid of the cultures. Lignin peroxidase (LiP) and laccase activities were not detected under a variety of different culture conditions. The highest MnP activity levels were obtained in nitrogen-limited cultures grown under an oxygen atmosphere. The enzyme was induced by Mn(II). The initial pH of the culture medium did not significantly affect the MnP production. Three MnP isozymes were identified (MnPI, MnPII, and MnPIII) and purified to homogeneity by anion-exchange chromatography followed by hydrophobic chromatography. The isozymes are glycoproteins with approximately the same molecular mass (around 45 kDa) but have different pIs. The pIs are 5.3, 4.2, and 3.3 for MnPI, MnPII, and MnPIII, respectively. The three isozymes are active in the same range of pHs (pHs 3.0 to 6.0) and have optimal pHs between 4.5 and 5.0. Their amino-terminal sequences, although highly similar, were distinct, suggesting that each is the product of a separate gene.


Subject(s)
Basidiomycota/enzymology , Peroxidases/isolation & purification , Amino Acid Sequence , Culture Media/chemistry , Molecular Sequence Data , Peroxidases/chemistry , Peroxidases/genetics
6.
Appl Environ Microbiol ; 59(6): 1792-7, 1993 Jun.
Article in English | MEDLINE | ID: mdl-16348955

ABSTRACT

The ability of the white rot fungus Ceriporiopsis subvermispora to mineralize C-synthetic lignin was studied under different culture conditions, and the levels of two extracellular enzymes were monitored. The highest mineralization rates (28% after 28 days) were obtained in cultures containing a growth-limiting amount of nitrogen source (1.0 mM ammonium tartrate); under this condition, the levels of manganese peroxidase (MnP) and laccase present in the culture supernatant solutions were very low compared with cultures containing 10 mM of the nitrogen source. In contrast, cultures containing a limiting concentration of the carbon source (0.1% glucose) showed low levels of both enzymes and also very low mineralization rates compared with cultures containing 1% glucose. Cultures containing 11 ppm of Mn(II) showed a higher rate of mineralization than those containing 0.3 or 40 ppm of this cation. Levels of MnP and laccase were higher when 40 ppm of Mn(II) was used. Mineralization rates were slightly higher in cultures flushed daily with oxygen, whereas laccase levels were lower and MnP levels were approximately the same as in cultures maintained under an air atmosphere. The presence of 0.4 mM veratryl alcohol reduced both mineralization rates and MnP levels, without affecting laccase levels. Lignin peroxidase activity was not detected under any condition. Addition of purified lignin peroxidase to the cultures in the presence or absence of veratryl alcohol did not enhance mineralization rates significantly.

SELECTION OF CITATIONS
SEARCH DETAIL
...