Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 20(12): 180-185, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31833641

ABSTRACT

In this work, we evaluated the change of primary monitor characteristics in two consecutive years. Sixty-six primary monitors were included in the analysis. The monitors were located at radiology physicians' offices and radiology reading rooms. All primary monitors were equipped with the manufacturer's built-in photometers and connected to the BarcoMediCalQA web service for manual and automatic quality control measurements. External photometer/illuminance meter (RaySafe Solo Light) was used to measure the luminance values. Measured luminance values of the TG18LN1-18 and TG18UNL80 test patterns were used to evaluate the primary monitors performance. In a comparison of the quality assurance (QA) measurement results for the same monitors that were performed within 2 years, the luminance of 25 displays remained statistically the same (P > 0.01). The luminance of 17 displays decreased (P < 0.01) in 2017 when compared with 2016, the luminance of 24 displays increased (P < 0.01) in 2017 when compared with 2016. For the annual measurements of the MLD in 2016 and 2017, 25 out of 66 displays showed a decrease of MLD values in 2017 compared with the same measurements in 2016 and 41 displays showed an increase of MLD in 2017. All tested primary displays had the MLD value less than 17.2%. The mean value of illuminance measured in 2016 was 5.8 lux ± 3.1 lux. In 2017, the mean value of illuminance measured was 8.7 lux ± 5.3 lux. Although it is expected that monitors luminance values will decrease over time, we found displays with increased luminance. This is possibly due to the multiple monitor calibrations that were performed between two annual monitor QA tests. Based on the findings of this work, more efficient display QA programs with a shorter time interval than 1 year are needed.


Subject(s)
Data Display/standards , Diagnostic Imaging/instrumentation , Diagnostic Imaging/standards , Photometry/standards , Quality Control , Radiology Information Systems/standards , Calibration , Computer Graphics/standards , Humans , Luminescent Measurements , Time Factors
2.
J Appl Clin Med Phys ; 18(2): 170-175, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28300388

ABSTRACT

The purpose of this work was to perform the initial evaluation of primary diagnostic monitor (PDM) characteristics following the implementation of New York City quality assurance (NYC QA) regulations on January 1, 2016, and compare the results of the QA measurements performed by an external photometer and the PDM manufacturer's built-in photometer. TG-18 and Society of Motion Picture and Television Engineers test patterns were used to evaluate monitor performance. Overall, 79 PDMs were included in the analysis. The verification of grayscale standard display function (GSDF) calibration, using a built-in photometer, showed that only 2 out of 79 PDMs failed calibration. However, the same measurements performed by the external luminance meter showed that 15 out of 79 monitors had failed GSDF calibration. Measurements of the PDMs maximum luminance (Lmax ), using an external photometer showed that 10 out of 53 PDMs calibrated for Lmax = 400 cd/m2 and 17 out of 26 PDMs calibrated for Lmax = 500 cd/m2 do not meet the manufacturer's recommended 10% tolerance limit for the target Lmax calibration. Two PDMs did not pass the Lmax ≥ 350 cd/m2 NYC QA regulations with Lmax = 331 cd/m2 and Lmax = 340 cd/m2 . All tested PDMs exceeded the minimum luminance ratio (LR) of 250:1 as required by NYC QA regulations. Measurements taken of Lmax and LR performed by a built-in photometer showed that none of the PDMs had failed the NYC QA regulations. All PDMs passed the luminance uniformity test with a maximum nonuniformity of 17% (according to NYC regulations it must be less than 30%). The luminance uniformity test could only be performed using an external photometer. The evaluation of 79 PDMs of various ages and models demonstrated up to 18% disagreement between luminance measurements performed by the manufacturer's built-in photometer when compared with those performed by an externally calibrated luminance meter. These disagreements were larger for older PDMs.


Subject(s)
Diagnostic Imaging/instrumentation , Image Processing, Computer-Assisted/methods , Photometry/instrumentation , Quality Assurance, Health Care/standards , Calibration , Humans , Luminescent Measurements , Reference Standards
3.
Radiat Prot Dosimetry ; 159(1-4): 172-81, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24803513

ABSTRACT

There is an imperative need to develop methods that can rapidly and accurately determine individual exposure to radiation for screening (triage) populations and guiding medical treatment in an emergency response to a large-scale radiological/nuclear event. To this end, a number of methods that rely on dose-dependent chemical and/or physical alterations in biomaterials or biological responses are in various stages of development. One such method, ex vivo electron paramagnetic resonance (EPR) nail dosimetry using human nail clippings, is a physical biodosimetry technique that takes advantage of a stable radiation-induced signal (RIS) in the keratin matrix of fingernails and toenails. This dosimetry method has the advantages of ubiquitous availability of the dosimetric material, easy and non-invasive sampling, and the potential for immediate and rapid dose assessment. The major challenge for ex vivo EPR nail dosimetry is the overlap of mechanically induced signals and the RIS. The difficulties of analysing the mixed EPR spectra of a clipped irradiated nail were addressed in the work described here. The following key factors lead to successful spectral analysis and dose assessment in ex vivo EPR nail dosimetry: (1) obtaining a thorough understanding of the chemical nature, the decay behaviour, and the microwave power dependence of the EPR signals, as well as the influence of variation in temperature, humidity, water content, and O2 level; (2) control of the variability among individual samples to achieve consistent shape and kinetics of the EPR spectra; (3) use of correlations between the multiple spectral components; and (4) use of optimised modelling and fitting of the EPR spectra to improve the accuracy and precision of the dose estimates derived from the nail spectra. In the work described here, two large clipped nail datasets were used to test the procedures and the spectral fitting model of the results obtained with it. A 15-donor nail set with 90 nail samples from 15 donors was used to validate the sample handling and spectral analysis methods that have been developed but without the interference of a native background signal. Good consistency has been obtained between the actual RIS and the estimated RIS computed from spectral analysis. In addition to the success in RIS estimation, a linear dose response has also been achieved for all individuals in this study, where the radiation dose ranges from 0 to 6 Gy. A second 16-donor nail set with 96 nail samples was used to test the spectral fitting model where the background signal was included during the fitting of the clipped nail spectra data. Although the dose response for the estimated and actual RIS calculated in both donor nail sets was similar, there was an increased variability in the RIS values that was likely due to the variability in the background signal between donors. Although the current methods of sample handling and spectral analysis show good potential for estimating the RIS in the EPR spectra of nail clippings, there is a remaining degree of variability in the RIS estimate that needs to be addressed; this should be achieved by identifying and accounting for demographic sources of variability in the background nail signal and the composition of the nail matrix.


Subject(s)
Biological Assay/methods , Electron Spin Resonance Spectroscopy/methods , Mechanotransduction, Cellular/radiation effects , Nails/radiation effects , Radiometry/methods , Humans , Nails/chemistry , Radiation Dosage
4.
Health Phys ; 98(2): 309-17, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20065699

ABSTRACT

Exposure of fingernails and toenails to ionizing radiation creates radicals that are stable over a relatively long period (days to weeks) and characterized by an isotropic EPR signal at g = 2.003 (so-called radiation-induced signal, RIS). This signal in readily obtained fingernail parings has the potential to be used in screening a population for exposure to radiation and determining individual dose to guide medical treatment. However, the mechanical harvesting of fingernail parings also creates radicals, and their EPR signals (so-called mechanically-induced signals, MIS) overlap the g approximately 2.0 region, interfering with efforts to quantify the RIS and, therefore, the radiation dose. Careful analysis of the time evolution and power-dependence of the EPR spectra of freshly cut fingernail parings has now resolved the MIS into three major components, including one that is described for the first time. It dominates the MIS soon after cutting, but decays within the first hour and consists of a unique doublet that can be resolved from the RIS. The MIS obtained within the first few minutes after cutting is consistent among fingernail samples and provides an opportunity to achieve the two important dosimetry objectives. First, perturbation of the initial MIS by the presence of RIS in fingernails that have received a threshold dose of radiation leads to spectral signatures that can be used for rapid screening. Second, decomposition of the EPR spectra from irradiated fingernails into MIS and RIS components can be used to isolate and thus quantify the RIS for determining individual exposure dose.


Subject(s)
Biological Assay/methods , Electron Spin Resonance Spectroscopy/methods , Free Radicals/analysis , Mechanotransduction, Cellular/radiation effects , Nails/metabolism , Nails/radiation effects , Radiometry/methods , Humans , In Vitro Techniques , Mechanotransduction, Cellular/physiology , Radiation Dosage , Reproducibility of Results , Sensitivity and Specificity
5.
Biochemistry ; 47(20): 5626-37, 2008 May 20.
Article in English | MEDLINE | ID: mdl-18426227

ABSTRACT

A first thiol-specific pH-sensitive nitroxide spin-label of the imidazolidine series, methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethylimidazolidin-4-ylmethyl) ester (IMTSL), has been synthesized and characterized. X-Band (9 GHz) and W-band (94 GHz) EPR spectral parameters of the new spin-label in its free form and covalently attached to an amino acid cysteine and a tripeptide glutathione were studied as a function of pH and solvent polarity. The pKa value of the protonatable tertiary amino group of the spin-label was found to be unaffected by other ionizable groups present in side chains of unstructured small peptides. The W-band EPR spectra were shown to allow for pKa determination from precise g-factor measurements. Is has been demonstrated that the high accuracy of pKa determination for pH-sensitive nitroxides could be achieved regardless of the frequency of measurements or the regime of spin exchange: fast at X-band and slow at W-band. IMTSL was found to react specifically with a model protein, iso-1-cytochrome c from the yeast Saccharomyces cerevisiae, giving EPR spectra very similar to those of the most commonly employed cysteine-specific label MTSL. CD data indicated no perturbations to the overall protein structure upon IMTSL labeling. It was found that for IMTSL, g iso correlates linearly with A iso, but the slopes are different for the neutral and charged forms of the nitroxide. This finding was attributed to the solvent effects on the spin density at the oxygen atom of the NO group and on the excitation energy of the oxygen lone-pair orbital.


Subject(s)
Nitrogen Oxides/chemistry , Proteins/chemistry , Sulfhydryl Compounds/chemistry , Calibration , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Protons , Sensitivity and Specificity , Static Electricity , Titrimetry
6.
J Phys Chem B ; 111(46): 13316-24, 2007 Nov 22.
Article in English | MEDLINE | ID: mdl-17973414

ABSTRACT

Charcoals prepared from certain tropical woods contain stable paramagnetic centers, and these have been characterized by EPR spectroscopy in the absence and presence of oxygen. The EPR-detectable spin density has been determined, as has been the temperature- and frequency-dependence of the oxygen broadening of the EPR signal, which is orders of magnitude larger than that observed with other materials, such as lithium phthalocyanine. Three Lorentzian components are required to fit the char EPR spectrum in the presence of oxygen, and the oxygen-dependence of the line width, intensity, and resonance position of the three components have been quantified. These results and the properties of porous carbonaceous materials are used to develop a model to explain the effect of oxygen on the char EPR spectral properties. The model is based on oxygen adsorption on the char surface according to a Langmuir isotherm and a dipolar interaction between the paramagnetic adsorbed gas and the charcoal spins. The three EPR components are correlated with the three known classes (sizes) of pores in charcoal, with the largest line broadening attributed to dipolar relaxation of spins in micropores, which have a larger specific surface area and a higher concentration of adsorbed oxygen. An attenuated, but similar, EPR response to oxygen by chars when they are immersed in aqueous solution is attributed to water competition with oxygen for adsorption on the char surface.


Subject(s)
Charcoal/chemistry , Oxygen/chemistry , Wood/chemistry , Adsorption , Algorithms , Electron Spin Resonance Spectroscopy , Models, Chemical , Thermodynamics
7.
Radiat Meas ; 42(6-7): 1075-1084, 2007 Jul.
Article in English | MEDLINE | ID: mdl-18591988

ABSTRACT

As a result of terrorism, accident, or war, populations potentially can be exposed to doses of ionizing radiation that could cause direct clinical effects within days or weeks. There is a critical need to determine the magnitude of the exposure to individuals so that those with significant risk have appropriate procedures initiated immediately, while those without a significant probability of acute effects can be reassured and removed from the need for further consideration in the medical/emergency system. In many of the plausible scenarios there is an urgent need to make the determination very soon after the event and while the subject is still present. In vivo EPR measurements of radiation-induced changes in the enamel of teeth is a method, perhaps the only such method, which can differentiate among doses sufficiently for classifying individuals into categories for treatment with sufficient accuracy to facilitate decisions on medical treatment. In its current state, the in vivo EPR dosimeter can provide estimates of absorbed dose with an error approximately +/- 50 cGy over the range of interest for acute biological effects of radiation, assuming repeated measurements of the tooth in the mouth of the subject. The time required for acquisition, the lower limit, and the precision are expected to improve, with improvements in the resonator and the algorithm for acquiring and calculating the dose. The magnet system that is currently used, while potentially deployable, is somewhat large and heavy, requiring that it be mounted on a small truck or trailer. Several smaller magnets, including an intraoral magnet are under development, which would extend the ease of use of this technique.

8.
J Magn Reson ; 173(2): 322-7, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15780925

ABSTRACT

This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.


Subject(s)
Influenza A virus/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Viral Proteins/chemistry , Aluminum Oxide , Nitrogen Isotopes , Phosphorus Isotopes , Protein Conformation
9.
J Am Chem Soc ; 126(29): 8872-3, 2004 Jul 28.
Article in English | MEDLINE | ID: mdl-15264799

ABSTRACT

This communication describes the use of a methanethiosulfonate derivative of an imidazolidine nitroxide, methanethiosulfonic acid S-(1-oxyl-2,2,3,5,5-pentamethyl-imidazolidin-4-ylmethyl) ester, IMTSL, for site-directed pKa determination of peptides by electron paramagnetic resonance. This spin label is covalently attached to the thiol group of unique cysteines incorporated into peptide structures. The tertiary amine nitrogen N3 of the label readily participates in proton exchange reactions, which are monitored through changes in EPR spectra of nitroxide moiety. Using EPR at 95 GHz (W-band) isotropic magnetic parameters of this nitroxide, both Aiso and giso, were calibrated in solvents of different polarity and pH. Two different linear correlations between Aiso and giso for acidic and basic forms of IMTSL were observed, making it possible to differentiate effects of local polarity from N3 protonation on nitroxide EPR spectra. Titration of a synthetic P11 peptide fragment of the laminin B1 chain illustrates the utility of this method.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Nitrogen Oxides/chemistry , Peptides/chemistry , Sulfhydryl Compounds/chemistry , Hydrogen-Ion Concentration , Imidazoles/chemistry , Kinetics , Mesylates/chemistry , Protein Folding , Spin Labels , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...