Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 41(48): 14122-31, 2002 Dec 03.
Article in English | MEDLINE | ID: mdl-12450375

ABSTRACT

We use a heterodimerizing leucine zipper system to examine the contribution of the interhelical a-a' interaction to dimer stability for six amino acids (A, V, L, I, K, and N). Circular dichroism (CD) spectroscopy monitored the thermal denaturation of 36 heterodimers that generate six homotypic and 30 heterotypic a-a' interactions. Isoleucine (I-I) is the most stable homotypic a-a' interaction, being 9.2 kcal/mol per dimer more stable than the A-A interaction and 4.0 kcal/mol per dimer more stable than either the L-L or V-V interaction, and 7.0 kcal/mol per dimer more stable than the N-N interaction. Only lysine was less stable than alanine. An alanine-based double-mutant thermodynamic cycle calculated coupling energies between the a and a' positions in the heterodimer. The aliphatic amino acids L, V, and I prefer to form homotypic interactions with coupling energies of -0.6 to -0.9 kcal/mol per dimer, but the heterotypic aliphatic interactions have positive coupling energies of <1.0 kcal/mol per dimer. The asparagine homotypic interaction has a coupling energy of -0.5 kcal/mol per dimer, while heterotypic interactions with the aliphatic amino acids produce coupling energies ranging from 2.6 to 4.9 kcal/mol per dimer. The homotypic K-K interaction is 2.9 kcal/mol per dimer less stable than the A-A interaction, but the coupling energy is only 0.3 kcal/mol per dimer. Heterotypic interactions with lysine and either asparagine or aliphatic amino acids produce similar coupling energies ranging from -0.2 to -0.7 kcal/mol per dimer. Thus, of the amino acids that were examined, asparagine contributes the most to dimerization specificity because of the large positive coupling energies in heterotypic interactions with the aliphatic amino acids which results in the N-N homotypic interaction.


Subject(s)
Amino Acids/chemistry , Avian Proteins , Leucine Zippers , Alanine/chemistry , Alanine/genetics , Amino Acid Sequence , Amino Acid Substitution/genetics , Amino Acids/genetics , Animals , Asparagine/chemistry , Asparagine/genetics , Basic-Leucine Zipper Transcription Factors , Carrier Proteins/chemistry , Carrier Proteins/genetics , Chickens , Circular Dichroism , Dimerization , Isoleucine/chemistry , Isoleucine/genetics , Leucine/chemistry , Leucine/genetics , Leucine Zippers/genetics , Lysine/chemistry , Lysine/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Secondary/genetics , Protein Structure, Tertiary/genetics , Thermodynamics , Transcription Factors/chemistry , Transcription Factors/genetics , Ultracentrifugation , Valine/chemistry , Valine/genetics
2.
Biochemistry ; 41(3): 906-13, 2002 Jan 22.
Article in English | MEDLINE | ID: mdl-11790113

ABSTRACT

The bacterial PEP:sugar phosphotransferase system couples the phosphorylation and translocation of specific sugars across the membrane. The activity of the first protein in this pathway, enzyme I (EI), is regulated by a monomer-dimer equilibrium where a Mg(2+)-dependent autophosphorylation by PEP requires the dimer. Dimerization constants for dephospho- and phospho-EI and inactive mutants EI(H189E) and EI(H189A) (in which Glu or Ala is substituted for the active site His189) have been measured under a variety of conditions by sedimentation equilibrium at pH 7.5 and 4 and 20 degrees C. Concurrently, thermal unfolding of these forms of EI has been monitored by differential scanning calorimetry and by changes in the intrinsic tryptophanyl residue fluorescence. Phosphorylated EI and EI(H189E) have 10-fold increased dimerization constants [ approximately 2 x 10(6) (M monomer)(-1)] compared to those of dephospho-EI and EI(H189A) at 20 degrees C. Dimerization is strongly promoted by 1 mM PEP with 2 mM MgCl(2) [K(A)' > or = 10(8) M(-1) at 4 or 20 degrees C], as demonstrated with EI(H189A) which cannot undergo autophosphorylation. Together, 1 mM PEP and 2 mM Mg(2+) also markedly stabilize and couple the unfolding of C- and N-terminal domains of EI(H189A), increasing the transition temperature (T(m)) for unfolding the C-terminal domain by approximately 18 degrees C and that for the N-terminal domain by approximately 9 degrees C to T(max) congruent with 63 degrees C, giving a value of K(D)' congruent with 3 microM PEP at 45 degrees C. PEP alone also promotes the dimerization of EI(H189A) but only increases T(m) approximately 5 degrees C for C-terminal domain unfolding without affecting N-terminal domain unfolding, giving an estimated value of K(D)' congruent with 0.2 mM for PEP dissociation in the absence of Mg(2+) at 45 degrees C. In contrast, the dimerization constant of phospho-EI at 20 degrees C is the same in the absence and presence of 5 mM PEP and 2 mM MgCl(2). Thus, the separation of substrate binding effects from those of phosphorylation by studies with the inactive EI(H189A) has shown that intracellular concentrations of PEP and Mg(2+) are important determinants of both the conformational stability and dimerization of dephospho-EI.


Subject(s)
Escherichia coli/enzymology , Phosphoenolpyruvate Sugar Phosphotransferase System/chemistry , Amino Acid Substitution , Crystallography, X-Ray , Dimerization , Enzyme Stability , Hot Temperature , Kinetics , Mutagenesis, Site-Directed , Phosphoenolpyruvate Sugar Phosphotransferase System/isolation & purification , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Thermodynamics , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...