Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766220

ABSTRACT

The decline of oocyte quality in aging but otherwise relatively healthy individuals compels a search for underlying mechanisms. Building upon a finding that exposure to male pheromone ascr#10 improves oocyte quality in C. elegans, we uncovered a regulatory cascade that promotes proliferation of oocyte precursors in adults and regulates oocyte quality. We found that the male pheromone promotes proliferation of oocyte precursors by upregulating LAG-2, a ligand of the Notch-like pathway in the germline stem cell niche. LAG-2 is upregulated by a TGFß-like ligand DAF-7 revealing similarity of regulatory mechanisms that promote germline proliferation in adults and larvae. A serotonin circuit that also regulates food search and consumption upregulates DAF-7 specifically in adults. The serotonin/DAF-7 signaling promotes germline expansion to compensate for oocyte expenditure which is increased by the male pheromone. Finally, we show that the earliest events in reproductive aging may be due to declining expression of LAG-2 and DAF-7. Our findings highlight neuronal signals that promote germline proliferation in response to the environment and argue that deteriorating oocyte quality may be due to reduced neuronal expression of key germline regulators.

2.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609125

ABSTRACT

The typical life cycle in most animal phyla includes a larval period that bridges embryogenesis and adulthood1. Despite the great diversity of larval forms, all larvae grow, acquire adult morphology and function, while navigating their habitats to obtain resources necessary for development. How larval development is coordinated with behavior remains substantially unclear. Here, we describe features of the iterative organization of larval stages that serve to assess the environment and procure resources prior to costly developmental commitments. We found that male-excreted pheromones accelerate2-4 the onset of adulthood in C. elegans hermaphrodites by coordinately advancing multiple developmental events and growth during the last larval stage. The larvae are sensitive to the accelerating male pheromones only at the end of the penultimate larval stage, just before the acceleration begins. Other larval stages also contain windows of sensitivity to environmental inputs. Importantly, behaviors associated with search and consumption of food are distinct between early and late portions of larval stages. We infer that each larval stage in C. elegans is subdivided into two epochs: A) global assessment of the environment to identify the most suitable patch and B) consumption of sufficient food and acquisition of salient information for developmental events in the next stage. We predict that in larvae of other species behavior is also divided into distinct epochs optimized either for assessing the habitat or obtaining the resources. Thus, a major role of larval behavior is to coordinate the orderly progression of development in variable environments.

3.
Mol Biol Evol ; 40(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37210586

ABSTRACT

Sex pheromones not only improve the reproductive success of the recipients, but also impose costs, such as a reduced life span. The underlying mechanisms largely remain to be elucidated. Here, we show that even a brief exposure to physiological amounts of the dominant Caenorhabditis elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome is the upregulation of genes expressed during oogenesis and the downregulation of genes associated with male gametogenesis. This result reveals a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function with the presence of potential mating partners. We also found that exposure to ascr#10 increased the risk of persistent intestinal infections in hermaphrodites due to pathological pharyngeal hypertrophy. Thus, our study reveals ways in which the male pheromone can not only have beneficial effects on the recipients' reproduction, but also cause harmful consequences that reduce life span.


Subject(s)
Caenorhabditis elegans , Pheromones , Animals , Male , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Pheromones/metabolism , Reproduction , Germ Cells/metabolism , Gene Expression
4.
Dev Biol ; 499: 24-30, 2023 07.
Article in English | MEDLINE | ID: mdl-37121310

ABSTRACT

Declining germline quality is a major cause of reproductive senescence. Potential remedies could be found by studying regulatory pathways that promote germline quality. Several lines of evidence, including a C. elegans male pheromone ascr#10 that counteracts the effects of germline aging in hermaphrodites, suggest that the nervous system plays an important role in regulating germline quality. Inspired by the fact that serotonin mediates ascr#10 signaling, here we show that serotonin reuptake inhibitors recapitulate the effects of ascr#10 on the germline and promote healthy oocyte aging in C. elegans. Surprisingly, we found that pharmacological increase of serotonin signaling stimulates several developmental processes in D. melanogaster, including improved oocyte quality, although underlying mechanisms appear to be different between worms and flies. Our results reveal a plausibly conserved role for serotonin in maintaining germline quality and identify a class of therapeutic interventions using available compounds that could efficiently forestall reproductive aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Drosophila melanogaster/metabolism , Oocytes/metabolism , Germ Cells/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
5.
bioRxiv ; 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36824927

ABSTRACT

Sex pheromones improve reproductive success, but also impose costs. Here we show that even brief exposure to physiological amounts of the dominant C. elegans male pheromone, ascr#10, alters the expression of thousands of genes in hermaphrodites. The most dramatic effect on the transcriptome was the upregulation of genes expressed during oogenesis and downregulation of genes associated with male gametogenesis. Among the detrimental effects of ascr#10 on hermaphrodites is the increased risk of persistent infections caused by pathological pharyngeal hypertrophy. Our results reveal a way in which social signals help to resolve the inherent conflict between spermatogenesis and oogenesis in a simultaneous hermaphrodite, presumably to optimally align reproductive function to the presence of potential mating partners. They also show that the beneficial effects of the pheromone are accompanied by harmful consequences that reduce lifespan.

6.
Nat Commun ; 14(1): 320, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658169

ABSTRACT

Recent studies of animal metabolism have revealed large numbers of novel metabolites that are involved in all aspects of organismal biology, but it is unclear to what extent metabolomes differ between sexes. Here, using untargeted comparative metabolomics for the analysis of wildtype animals and sex determination mutants, we show that C. elegans hermaphrodites and males exhibit pervasive metabolomic differences. Several hundred small molecules are produced exclusively or in much larger amounts in one sex, including a host of previously unreported metabolites that incorporate building blocks from nucleoside, carbohydrate, lipid, and amino acid metabolism. A subset of male-enriched metabolites is specifically associated with the presence of a male germline, whereas enrichment of other compounds requires a male soma. Further, we show that one of the male germline-dependent metabolites, an unusual dipeptide incorporating N,N-dimethyltryptophan, increases food consumption, reduces lifespan, and accelerates the last stage of larval development in hermaphrodites. Our results serve as a foundation for mechanistic studies of how the genetic sex of soma and germline shape the C. elegans metabolome and provide a blueprint for the discovery of sex-dependent metabolites in other animals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Male , Caenorhabditis elegans/metabolism , Metabolome , Caenorhabditis elegans Proteins/metabolism , Metabolomics/methods , Longevity
7.
Proc Biol Sci ; 289(1987): 20220913, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36448283

ABSTRACT

Behaviour and physiology are altered in reproducing animals, but neuronal circuits that regulate these changes remain largely unknown. Insights into mechanisms that regulate and possibly coordinate reproduction-related traits could be gleaned from the study of sex pheromones that can improve the reproductive success of potential mating partners. In Caenorhabditis elegans, the prominent male pheromone, ascr#10, modifies reproductive behaviour and several aspects of reproductive physiology in hermaphrodite recipients, including improving oocyte quality. Here we show that a circuit that contains serotonin-producing and serotonin-uptaking neurons plays a key role in mediating effects of ascr#10 on germline development and egg laying behaviour. We also demonstrate that increased serotonin signalling promotes proliferation of germline progenitors in adult hermaphrodites. Our results establish a role for serotonin in maintaining germline quality and highlight a simple neuronal circuit that acts as a linchpin that couples food intake, mating behaviour, reproductive output, and germline renewal and provisioning.


Subject(s)
Caenorhabditis elegans , Serotonin , Male , Animals , Germ Cells , Oviposition , Transcription Factors , Cell Proliferation
8.
Proc Natl Acad Sci U S A ; 119(21): e2015576119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35576466

ABSTRACT

Pheromones exchanged by conspecifics are a major class of chemical signals that can alter behavior, physiology, and development. In particular, males and females communicate with potential mating partners via sex pheromones to promote reproductive success. Physiological and developmental mechanisms by which pheromones facilitate progeny production remain largely enigmatic. Here, we describe how a Caenorhabditis elegans male pheromone, ascr#10, improves the oogenic germline. Before most signs of aging become evident, C. elegans hermaphrodites start producing lower-quality gametes characterized by abnormal morphology, increased rates of chromosomal nondisjunction, and higher penetrance of deleterious alleles. We show that exposure to the male pheromone substantially ameliorates these defects and reduces embryonic lethality. ascr#10 stimulates proliferation of germline precursor cells in adult hermaphrodites. Coupled to the greater precursor supply is increased physiological germline cell death, which is required to improve oocyte quality in older mothers. The hermaphrodite germline is sensitive to the pheromone only during a time window, comparable in duration to a larval stage, in early adulthood. During this period, prereproductive adults assess the suitability of the environment for reproduction. Our results identify developmental events that occur in the oogenic germline in response to a male pheromone. They also suggest that the opposite effects of the pheromone on gamete quality and maternal longevity arise from competition over resource allocation between soma and the germline.


Subject(s)
Caenorhabditis elegans , Cellular Senescence , Oocytes , Oogenesis , Sex Attractants , Animals , Caenorhabditis elegans/growth & development , Cellular Senescence/drug effects , Cellular Senescence/physiology , Female , Male , Oocytes/drug effects , Oocytes/physiology , Oogenesis/drug effects , Oogenesis/physiology , Sex Attractants/pharmacology , Sex Attractants/physiology
9.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35128345

ABSTRACT

Animals broadcast small molecule pheromones that can alter behavior and physiology in conspecifics. Neuronal circuits that regulate these processes remain largely unknown. In C. elegans, male-enriched ascaroside sex pheromone ascr#10, in addition to behavioral effects, expands the population of germline precursor cells in hermaphrodites. Previously, we identified several sensory neurons required for this effect. We also found that feedback from egg laying acts via serotonergic signaling to license the pheromone response in reproducing adults. Here, using newly available reagents, we confirm and extend several of our previous conclusions: a) the ADL neurons are essential for the ascr#10 response, b) phasmid neurons (PHA and PHB) are unlikely to be involved in the ascr#10 response, c) the mod-1 receptor is the main conduit of the serotonergic feedback from egg laying, and d) serotonin remains the only currently known signal of this feedback. Our findings better define the neuronal circuits that mediate the germline response to the major male pheromone.

10.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35047764

ABSTRACT

Valence of animal pheromone blends can vary due to differences in relative abundance of individual components. For example, in C. elegans, whether a pheromone blend is perceived as "male" or "hermaphrodite" is determined by the ratio of concentrations of ascr#10 and ascr#3. The neuronal mechanisms that evaluate this ratio are not currently understood. We present data that suggest that the function of guanylyl cyclase ODR-1 in AWB neurons is required for the effect of ascr#3 that counteracts the activity of ascr#10. This finding defines a new module in the neuronal mechanism that determines the sexual identity of C. elegans pheromone.

11.
Dev Biol ; 475: 54-64, 2021 07.
Article in English | MEDLINE | ID: mdl-33636188

ABSTRACT

Understanding temporal regulation of development remains an important challenge. Whereas average, species-typical timing of many developmental processes has been established, less is known about inter-individual variability and correlations in timing of specific events. We addressed these questions in the context of postembryonic development in Caenorhabditis elegans. Based on patterns of locomotor activity of freely moving animals, we inferred durations of four larval stages (L1-L4) in over 100 individuals. Analysis of these data supports several conclusions. Individuals have consistently faster or slower rates of development because durations of L1 through L3 stages are positively correlated. The last larval stage, the L4, is less variable than the earlier stages and its duration is largely independent of the rate of early larval development, implying existence of two distinct larval epochs. We describe characteristic patterns of variation and correlation, as well as the fact that stage durations tend to scale relative to total developmental time. This scaling relationship suggests that each larval stage is not limited by an absolute duration, but is instead terminated when a subset of events that must occur prior to adulthood have been completed. The approach described here offers a scalable platform that will facilitate the study of temporal regulation of postembryonic development.


Subject(s)
Caenorhabditis elegans/growth & development , Gene Expression Regulation, Developmental/genetics , Larva/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/physiology , Larva/growth & development , Locomotion/genetics , Locomotion/physiology , Spatio-Temporal Analysis
12.
Curr Biol ; 29(23): 4108-4115.e4, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31708394

ABSTRACT

Successful reproduction in animals requires orchestration of behavior and physiological processes. Pheromones can induce both "releaser" (behavioral) and "priming" (physiological) effects [1] in vertebrates [2, 3] and invertebrates [4, 5]. Therefore, understanding the mechanisms underlying pheromone responses could reveal how reproduction-related behaviors and physiology are coordinated. Here, we describe a neuronal circuit that couples the reproductive system and behavior in adult Caenorhabditis elegans hermaphrodites. We found that the response of the oogenic germline to the male pheromone requires serotonin signal from NSM and HSN neurons that acts via the mod-1 receptor in AIY and RIF interneurons and is antagonized by pigment-dispersing factor (PDF). Surprisingly, the same neurons and pathways have been previously implicated in regulation of exploratory behavior in the absence of male-produced signals [6]. We demonstrate that male pheromone acts via this circuit in hermaphrodites to reduce exploration and decrease mating latency, thereby tuning multiple fitness-proximal processes. Our results demonstrate how a single circuit could coordinate behavioral and physiological responses to the environment, even those that unfold on different timescales. Our findings suggest the existence of a centralized regulatory mechanism that balances organismal resources between reproductive investment and somatic maintenance.


Subject(s)
Caenorhabditis elegans/physiology , Hermaphroditic Organisms/physiology , Ovum/physiology , Pheromones/physiology , Signal Transduction , Social Behavior , Animals , Cues , Female , Male , Neurons/physiology , Serotonin/metabolism
13.
Curr Biol ; 29(23): 4116-4123.e3, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31708396

ABSTRACT

Unlike juveniles, adult animals engage in suites of behaviors related to the search for and selection of potential mates and mating, including appropriate responses to sex pheromones. As in other species [1], male sex pheromones modulate several behaviors and physiological processes in C. elegans hermaphrodites [2-5]. In particular, one of these small-molecule signals, an ascaroside ascr#10, causes reduced exploration, more avid mating, and improved reproductive performance (see the accompanying paper by Aprison and Ruvinsky in this issue of Current Biology) [6]. Here, we investigated the mechanism that restricts pheromone response to adult hermaphrodites. Unexpectedly, we found that attainment of developmental adulthood was not alone sufficient for the behavioral response to the pheromone. To modify exploratory behavior in response to male pheromone, adult hermaphrodites also require functional germline and egg-laying apparatus. We show that this dependence of behavior on the reproductive system is due to feedback from the vulva muscles that reports ongoing reproduction to the nervous system. Our results reveal an activity-dependent conduit by which the reproductive system continuously licenses adult behaviors, including appropriate responses to the pheromones of the opposite sex. More broadly, our results suggest that signals from peripheral organs may serve as an important component of assuring age-appropriate functions of the nervous system.


Subject(s)
Caenorhabditis elegans/physiology , Hermaphroditic Organisms/physiology , Ovum/physiology , Pheromones/physiology , Signal Transduction , Social Behavior , Animals , Cues , Female , Male , Oviposition , Sexual Maturation
14.
Nat Chem Biol ; 15(8): 838-845, 2019 08.
Article in English | MEDLINE | ID: mdl-31320757

ABSTRACT

Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in Caenorhabditis elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and is dependent on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout metazoa.


Subject(s)
Aging/physiology , Caenorhabditis elegans/metabolism , Oviposition/physiology , Animals , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Hermaphroditic Organisms/physiology , Male , Mutation , Signal Transduction
15.
Curr Opin Syst Biol ; 13: 23-30, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30984890

ABSTRACT

Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.

16.
Curr Biol ; 27(17): 2589-2599.e3, 2017 Sep 11.
Article in English | MEDLINE | ID: mdl-28844646

ABSTRACT

Sex pheromones facilitate reproduction by attracting potential mates and altering their behavior and physiology. In C. elegans, males and hermaphrodites secrete similar blends of pheromone molecules, two of which are present in different relative concentrations: ascr#3, which is more abundant in hermaphrodites, and ascr#10, which is more abundant in males. It is not currently understood how this compositional difference results in sex-specific effects, for example, the slower aging of the hermaphrodite germline in the presence of physiologically relevant concentrations of male pheromones. Here we report three key elements of the mechanism responsible for this phenomenon. First, ascr#3 counters the activity of ascr#10. This antagonism decreases the magnitude and the sensitivity of the hermaphrodite response to the male pheromone, restricting it to situations in which the presence of a male could be inferred with high confidence. Second, hermaphrodites recognize pheromone as male if the concentration of ascr#10 is higher than that of ascr#3. Third, the response to ascr#10 requires TRPV channel function in the ADL neurons and the daf-7 signaling from the ASI neurons, whereas the response to ascr#3 relies on cyclic guanosine monophosphate (cGMP)-gated channels and activity of the ASJ, AWB, and AWC neurons. These results argue that the counteracting activities of distinct neuronal circuits determine the sexual identity of the pheromone. The parallels between this mechanism and other signaling systems suggest that diverse organisms may perform particular neuronal computations using similar general principles.


Subject(s)
Caenorhabditis elegans/physiology , Hermaphroditic Organisms/physiology , Sex Attractants/physiology , Signal Transduction , Adult Germline Stem Cells , Animals , Male
17.
Curr Biol ; 26(20): 2827-2833, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27618262

ABSTRACT

Males and females pursue different reproductive strategies, which often bring them into conflict-many traits exist that benefit one sex at a cost to another [1]. Decreased female survival following mating dramatically demonstrates one aspect of this phenomenon [2-5]. Particularly intriguing is the evidence that secreted compounds can shorten lifespan of members of the opposite sex in Drosophila [6] and Caenorhabditid nematodes [7] even without copulation taking place. The purpose of such signals is not clear, however. While it is possible that they could limit subsequent mating with competitors or hasten post-reproductive demise, thus decreasing competition for resources, they are also likely to harm unmated individuals. Why would a system exist that reduces the vigor of potential mates prior to mating? Addressing this question could provide insights into mechanisms and evolution of sexual conflict and reveal sensory inputs that regulate aging. Here, we describe two distinct ways in which Caenorhabditis elegans males cause faster somatic aging of hermaphrodites but also manipulate different aspects of their reproductive physiology. The first, mediated by conserved ascaroside pheromones, delays the loss of germline progenitor cells. The second accelerates development, resulting in faster sexual maturation. These signals promote male reproductive strategy and the effects harmful to hermaphrodites appear to be collateral damage rather than the goal.


Subject(s)
Aging , Caenorhabditis elegans/physiology , Hermaphroditic Organisms/physiology , Pheromones/metabolism , Sexual Behavior, Animal , Animals , Caenorhabditis elegans/growth & development , Germ Cells/physiology , Hermaphroditic Organisms/growth & development , Male , Reproduction
18.
PLoS Genet ; 11(12): e1005729, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26645097

ABSTRACT

Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay.


Subject(s)
Hermaphroditic Organisms/physiology , Reproduction/genetics , Sex Attractants/metabolism , Sexual Behavior, Animal , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Female , Hermaphroditic Organisms/genetics , Hot Temperature , Male , Oocytes/metabolism , Sex Attractants/genetics , Spermatozoa/metabolism
19.
PLoS One ; 10(12): e0145925, 2015.
Article in English | MEDLINE | ID: mdl-26713620

ABSTRACT

Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.


Subject(s)
Caenorhabditis elegans/physiology , Heat-Shock Response/physiology , Adaptation, Physiological , Animals , Ecosystem , Fertility , Male , Mothers , Ovum/physiology , Reproduction , Spermatozoa/physiology , Tissue Survival
20.
PLoS Genet ; 11(5): e1005268, 2015 May.
Article in English | MEDLINE | ID: mdl-26020930

ABSTRACT

Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Phylogeny , Regulatory Sequences, Nucleic Acid/genetics , Animals , Caenorhabditis elegans/genetics , Gene Expression Regulation , Genetic Variation , Nematoda/genetics , Nucleotide Motifs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...