Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(3-2): 035208, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073038

ABSTRACT

We derive the analytical dispersion relation of a high-energy laser beam's backward stimulated Brillouin scattering (BSBS) in a hot plasma, that accounts both for the random phase plate (RPP) induced spatial shaping and its associated phase randomness. Indeed, phase plates are mandatory in large laser facilities where a precise control of the focal spot size is required. While the focal spot size is well controlled, such techniques produce small scale intensity variations that can trigger laser-plasma instabilities such as BSBS. Quantifying the resulting instability variability is shown to be crucial for understanding accurately the backscattering temporal and spatial growth as well as the asymptotic reflectivity. Our model, validated by means of a large number of three-dimensional paraxial simulations and experimental data, offers three quantitative predictions. The first one addresses the temporal exponential growth of the reflectivity by deriving and solving the BSBS RPP dispersion relation. A large statistical variability of the temporal growth rate is shown to be directly related to the phase plate randomness. Then, we predict the portion of the beam's section that is absolutely unstable, thus helping to precisely assess the validity of the vastly used convective analysis. Finally, a simple analytical correction to the plane wave spatial gain is extracted from our theory giving a practical and effective asymptotic reflectivity prediction that includes the impact of phase plates smoothing techniques. Hence, our study sheds light on the long-time studied BSBS, deleterious to many high-energy experimental studies related to the physics of inertial confinement fusion.

2.
Phys Rev Lett ; 127(26): 265001, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029462

ABSTRACT

In this Letter, we show that cross-beam energy transfer (CBET), ubiquitous in inertial confinement fusion (ICF) experiments, may be strongly modified by the speckle pattern of the beams. This is demonstrated by the means of two-dimensional particle in cell simulations, supported by a linear model. In particular, we show that, although they would be the same in a plane wave model, the exchange rates of energy may be significantly different whether there is a plasma flow, or a wavelength shift, especially when the waves are weakly damped. When the crossed laser beams have different frequencies, the energy exchange rate is substantially reduced compared with the predictions of the plane wave model, widely used in the hydrodynamic codes that model and interpret ICF experiments. Such effects can partly explain the disagreement of the CBET predictions compared with experimental results.

3.
Phys Rev Lett ; 120(24): 245002, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29956944

ABSTRACT

We study the stability of current filaments produced by the Weibel, or current filamentation, instability in weakly magnetized counterstreaming plasmas. It is shown that a resonance exists between the current-carrying ions and a longitudinal drift-kink mode that strongly deforms and eventually breaks the current filaments. Analytical estimates of the wavelength, growth rate, and saturation level of the resonant mode are derived and validated by three-dimensional particle-in-cell simulations. Furthermore, self-consistent simulations of counterstreaming plasmas indicate that this drift-kink mode is dominant in the slow down of the flows and in the isotropization of the magnetic field, playing an important role in the formation of collisionless shocks.

4.
Phys Rev Lett ; 118(19): 194801, 2017 May 12.
Article in English | MEDLINE | ID: mdl-28548516

ABSTRACT

We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a µm-scale solid-density hydrogen target. Under such conditions, electromagnetic fields are amplified by the relativistic electron Weibel instability and are maximized at the critical density region of the target. The analysis of the spatial profile of the protons indicates the generation of B>10 MG and E>0.1 MV/µm fields with a µm-scale wavelength. These results are in good agreement with three-dimensional particle-in-cell simulations and analytical estimates, which further confirm that this process is dominant for different target materials provided that a preplasma is formed on the rear side with scale length ≳0.13λ_{0}sqrt[a_{0}]. These findings impose important constraints on the preplasma levels required for high-quality proton acceleration for multipurpose applications.

5.
Phys Rev Lett ; 117(6): 065001, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27541468

ABSTRACT

The formation of collisionless shocks mediated by the ion Weibel instability is addressed theoretically and numerically in the nonrelativistic limit. First, the model developed in C. Ruyer et al., Phys. Plasmas 22, 032102 (2015) for the weakly nonlinear ion Weibel instability in a symmetric two-stream system is shown to be consistent with recent experimental and simulation results. Large-scale kinetic simulations are then performed to clarify the spatiotemporal evolution of the magnetic-field and plasma properties in the subsequent strongly nonlinear phase leading to shock formation. A simple analytical model is proposed which captures the simulation results up to a point close to ion isotropization. Electron screening effects are found important in the instability dynamics, so that numerical simulations using a nonphysical electron mass should be considered with caution.

6.
Phys Rev Lett ; 115(21): 215003, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26636856

ABSTRACT

We report on the first self-consistent numerical study of the feasibility of laser-driven relativistic pair shocks of prime interest for high-energy astrophysics. Using a QED-particle-in-cell code, we simulate the collective interaction between two counterstreaming electron-positron jets driven from solid foils by short-pulse (~60 fs), high-energy (~100 kJ) lasers. We show that the dissipation caused by self-induced, ultrastrong (>10^{6} T) electromagnetic fluctuations is amplified by intense synchrotron emission, which enhances the magnetic confinement and compression of the colliding jets.

SELECTION OF CITATIONS
SEARCH DETAIL
...