Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Front Plant Sci ; 12: 756357, 2021.
Article in English | MEDLINE | ID: mdl-34733307

ABSTRACT

The hybrid peptide BP178 (KKLFKKILKYLAGPAGIGKFLHSAKKDEL-OH), derived from BP100 (KKLFKKILKYL) and magainin (1-10), and engineered for plant expression, had a strong bactericidal activity but not fungicidal. Moreover, the preventive spray of tomato plants with BP178 controlled infections by the plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, as well as the fungus Botrytis cinerea. The treatment of tomato plants with BP178 induced the expression of several genes according to microarray and RT-qPCR analysis. Upregulated genes coded for several pathogenesis-related proteins, including PR1, PR2, PR3, PR4, PR5, PR6, PR7, PR9, PR10, and PR14, as well as transcription factors like ethylene transcription factors, WRKY, NAC and MYB, involved in the salicylic acid, jasmonic acid, and ethylene-signaling pathways. BP178 induced a similar gene expression pattern to flg15 according to RT-qPCR analysis, whereas the parent peptide BP100 did not trigger such as a strong plant defense response. It was concluded that BP178 was a bifunctional peptide protecting the plant against pathogen infection through a dual mechanism of action consisting of antimicrobial activity against bacterial pathogens and plant defense elicitation on plant host.

2.
Phytopathology ; 108(2): 223-233, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28945144

ABSTRACT

Brown spot of pear, caused by the fungus Stemphylium vesicarium, is an emerging disease of economic importance in several pear-growing areas in Europe. In recent years, new control strategies combining sanitation practices and fungicide applications according to developed forecasting models have been introduced to manage the disease. However, the pathogenic and saprophytic behavior of this pathogen makes it difficult to manage the disease. In addition, climate change can also result in variations in the severity and geographical distribution of the disease. In this study, ecological and epidemiological aspects of brown spot of pear disease related to inoculum characterization and climate change impact were elucidated. The pathogenic variation in S. vesicarium populations from pear orchards and its relationship to inoculum sources (air samples, leaf debris, and infected host and nonhost tissues) was determined using multivariate analysis. In total, six variables related to infection and disease development on cultivar Conference pear detached leaves of 110 S. vesicarium isolates were analyzed. A high proportion of isolates (42%) were nonpathogenic to pear; 85% of these nonpathogenic isolates were recovered from air samples. Most isolates recovered from lesions (93%) and pseudothecia (83%) were pathogenic to pear. A group of pathogenic isolates rapidly infected cultivar Conference pear leaves resulted in disease increase that followed a monomolecular model, whereas some S. vesicarium isolates required a period of time after inoculation to initiate infection and resulted in disease increase that followed a logistic model. The latter group was mainly composed of isolates recovered from pseudothecia on leaf debris, whereas the former group was mainly composed of isolates recovered from lesions on pear fruit and leaves. The relationship between the source of inoculum and pathogenic/aggressiveness profile was confirmed by principal component analysis. The effect of climate change on disease risk was analyzed in two pear-growing areas of Spain under two scenarios (A2 and B1) and for three periods (2005 to 2009, 2041 to 2060, and 2081 to 2100). Simulations showed that the level of risk predicted by BSPcast model increased to high or very high under the two scenarios and was differentially distributed in the two regions. This study is an example of how epidemiological models can be used to predict not only the onset of infections but also how climate change could affect brown spot of pear. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .


Subject(s)
Ascomycota/isolation & purification , Plant Diseases/microbiology , Pyrus/microbiology , Ascomycota/pathogenicity , Ascomycota/physiology , Climate Change , Fruit/microbiology , Fungicides, Industrial , Geography , Multivariate Analysis , Plant Leaves/microbiology , Risk , Spain
3.
Fungal Biol ; 120(1): 61-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26693685

ABSTRACT

Peptide BP15 has shown antifungal activity against several plant pathogenic fungi, including Stemphylium vesicarium, the causal agent of brown spot of pear. BP15 inhibits the germination, growth and sporulation of S. vesicarium and displays post-infection activity by stopping fungal infection in pear leaves. In this work, live-cell imaging was undertaken to understand the antifungal mechanism of BP15. A double-staining method based on the combination of calcofluor white and SYTOX green coupled with epifluorescence microscopy was used to investigate fungal cell permeabilization and alterations in fungal growth induced by BP15. GFP-transformants of S. vesicarium were obtained and exposed to rhodamine-labelled BP15. Confocal laser microscopy provided evidence of peptide internalization by hyphae, resulting in fungal cell disorganization and death. S. vesicarium membrane permeabilization by BP15 was found to be peptide-concentration dependent. BP15 at MIC and sub-MIC concentrations (10 and 5 µM, respectively) inhibited S. vesicarium growth and produced morphological alterations to germ tubes, with slow and discontinuous compromise of fungal cell membranes. Fungal cell membrane disruption was immediately induced by BP15 at 100 µM, and this was accompanied by rapid peptide internalization by S. vesicarium hyphae. Peptide BP15 interacted with germ tubes and hyphae of S. vesicarium but not with conidial cells.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/drug effects , Peptides/pharmacology , Plant Diseases/microbiology , Pyrus/microbiology , Ascomycota/growth & development , Hyphae/drug effects , Hyphae/growth & development , Microbial Sensitivity Tests
4.
Fungal Biol ; 119(2-3): 136-44, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25749365

ABSTRACT

Stemphylium vesicarium is the causal agent of brown spot of pear, an important disease reported in pear-growing areas of Europe. The pathogen is able to colonize pear leaf debris and dead tissues of herbaceous plants and produce abundant ascospores and conidia that are capable of infecting pear trees. Inoculum monitoring in pear orchards is mainly achieved through spore traps and species identification is based on conidial morphology, but the similarities on conidial traits among species of Stemphylium make correct identification difficult. In this work a total of thirty-seven Stemphylium isolates from pear orchards were characterized at the morphological, pathogenic, and molecular level. Correspondence among ITS and gpd sequences and morphological traits were evaluated. Species identification based exclusively on morphological data was not feasible. Combined morphological and molecular data were necessary for unambiguous identification of isolates in the S. vesicarium species group. Only isolates identified as S. vesicarium were pathogenic on pear. The study revealed that several species of Stemphylium coexist in pear orchards with S. vesicarium, the causal agent of BSP, and that combined morphological and molecular data are needed to differentiate them. Consequently, direct measurements of the airborne inoculum using volumetric spore traps may overestimate the actual pathogen population.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Biodiversity , Plant Diseases/microbiology , Pyrus/microbiology , Ascomycota/cytology , Ascomycota/genetics , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Europe , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA
5.
Plant Dis ; 99(12): 1816-1822, 2015 Dec.
Article in English | MEDLINE | ID: mdl-30699505

ABSTRACT

Brown spot of pear, caused by Stemphylium vesicarium, is a fungal disease of increasing importance in several pear-growing areas of Europe. Disease control measures include the application of fungicides and sanitation methods. Antimicrobial peptides may be a complement or alternative to conventional fungicides used to manage brown spot disease. In a previous study, the synthetic peptide BP15 showed postinfection fungicidal activity against S. vesicarium in in vitro and detached-leaf assays. In the present study, the efficacy of BP15 (KKLFKKILKVL-NH2) in controlling brown spot of pear was evaluated under field conditions using potted plants and pear trees in orchards. In field trials, the treatments with BP15 or with the fungicide thiram were scheduled according to the infection risk predicted by the BSPcast model. Potted pear plants treated with BP15 showed a disease reduction of about 42 to 60% in five of seven trials. In three of four tree trials, the disease severity on shoots treated with BP15 was significantly lower than in the nontreated controls, with a mean efficacy of 38.2%. It was concluded that BP15 is a good candidate to be further developed as a fungicide for controlling brown spot of pear.

6.
Trees (Berl West) ; 26(1): 239-245, 2012.
Article in English | MEDLINE | ID: mdl-25983397

ABSTRACT

Brown spot of pear is a fungal disease producing high economical losses in several pear-growing areas in Europe. Fungicide applications during the growing period either at fixed schedule or delivered according to the BSPcast forecasting system are not enough to control the disease under favorable conditions. New strategies have been introduced to control the inoculum production using sanitation methods. These methods are based on combinations of leaf litter removal during winter and biological control agent applications during late winter, spring and summer. These practices reduce both the inoculum pressure and disease levels. Therefore, the resulting optimized disease management consists of a combination of sanitation methods applied during the whole year with chemical fungicides scheduled according to the BSPcast forecasting model during the vegetative period. It is expected that the control of brown spot could be further refined upon availability of rapid methods for inoculum potential analysis. However, this analysis is difficult due to the variability in pathogenicity within the pathogen population.

7.
Int Microbiol ; 11(2): 111-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18645961

ABSTRACT

Four methods were tested to assess the fire-blight disease response on grafted pear plants. The leaves of the plants were inoculated with Erwinia amylovora suspensions by pricking with clamps, cutting with scissors, local infiltration, and painting a bacterial suspension onto the leaves with a paintbrush. The effects of the inoculation methods were studied in dose-time-response experiments carried out in climate chambers under quarantine conditions. A modified Gompertz model was used to analyze the disease-time relatiobbnships and provided information on the rate of infection progression (rg) and time delay to the start of symptoms (t0). The disease-pathogen-dose relationships were analyzed according to a hyperbolic saturation model in which the median effective dose (ED50) of the pathogen and maximum disease level (ymax) were determined. Localized infiltration into the leaf mesophile resulted in the early (short t0) but slow (low rg) development of infection whereas in leaves pricked with clamps disease symptoms developed late (long t0) but rapidly (high rg). Paintbrush inoculation of the plants resulted in an incubation period of medium length, a moderate rate of infection progression, and low ymax values. In leaves inoculated with scissors, fire-blight symptoms developed early (short t0) and rapidly (high rg), and with the lowest ED50 and the highest ymax.


Subject(s)
Erwinia amylovora/pathogenicity , Plant Diseases/microbiology , Pyrus/microbiology , Plant Leaves/microbiology , Rosaceae/classification , Rosaceae/microbiology , Species Specificity
8.
Int. microbiol ; 11(2): 111-119, jun. 2008. ilus, tab
Article in En | IBECS | ID: ibc-67272

ABSTRACT

Four methods were tested to assess the fire-blight disease response on grafted pear plants. The leaves of the plants were inoculated with Erwinia amylovora suspensions by pricking with clamps, cutting with scissors, local infiltration, and painting a bacterial suspension onto the leaves with a paintbrush. The effects of the inoculation methods were studied in dose-time-response experiments carried out in climate chambers under quarantine conditions. A modified Gompertz model was used to analyze the disease-time relatiobbnships and provided information on the rate of infection progression (rg) and time delay to the start of symptoms (t0). The disease-pathogen-dose relationships were analyzed according to a hyperbolic saturation model in which the median effective dose (ED50) of the pathogen and maximum disease level (ymax) were determined. Localized infiltration into the leaf mesophile resulted in the early (short t0) but slow (low rg) development of infection whereas in leaves pricked with clamps disease symptoms developed late (long t0) but rapidly (high rg). Paintbrush inoculation of the plants resulted in an incubation period of medium length, a moderate rate of infection progression, and low ymax values. In leaves inoculated with scissors, fire-blight symptoms developed early (short t0) and rapidly (high rg), and with the lowest ED50 and the highest (AU)


No disponible


Subject(s)
Erwinia amylovora/pathogenicity , Plant Diseases/microbiology , Host-Parasite Interactions , Rosaceae/microbiology
9.
Phytopathology ; 96(8): 900-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-18943756

ABSTRACT

ABSTRACT An atypical strain of Erwinia amylovora was isolated near an outbreak of fire blight at a nursery in Spain in 1996. It was obtained from a Crataegus plant showing typical symptoms and was identified as E. amy-lovora by biochemical tests and enrichment-enzyme-linked immuno-sorbent assay, but not by polymerase chain reaction using primers based on the pEA29 sequence. Nevertheless, with primers from chromosomal regions, the isolate gave the expected amplification band. This strain carries one plasmid of approximately 70 kb, with no homology with the 29-kb plasmid common to all pathogenic strains, or with a large plasmid present in some E. amylovora strains. Growth of the strain in minimal medium without thiamine was slower compared with cultures in the same medium with thiamine, a characteristic typical of strains cured of the 29-kb plasmid. Nevertheless, aggressiveness assays on pear, apple, and Pyracantha plants and in immature pear fruit showed that this strain exhibited a virulence level similar to other strains containing pEA29. To the best of our knowledge, this is the first report of the isolation from naturally infected plant material of a pathogenic strain of E. amylovora without pEA29, but with a plasmid of approximately 70 kb not previously described.

SELECTION OF CITATIONS
SEARCH DETAIL
...