Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J AAPOS ; 28(3): 103925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697387

ABSTRACT

BACKGROUND: NGLY1 deficiency is a rare autosomal recessive disorder with core features of global developmental delay, liver enzyme abnormalities, movement disorder, polyneuropathy, and hypo- or alacrima. We characterized the full spectrum and evolution of the ocular phenotype in a prospective natural history of NGLY1 deficiency. METHODS: We collected ophthalmological data on 29 individuals with NGLY1 deficiency in a natural history study. Medical records were reviewed to confirm caregiver-reported symptoms. Of the 29, 15 participants appeared for at least one ophthalmological examination. RESULTS: Caregivers reported at least one ocular sign or symptom in 90% of participants (26/29), most commonly decreased tears, refractive error, and chronic infection. Daily eye medication, including artificial tears, ophthalmic ointment, and topical antibiotics were used by 62%. Ophthalmological examination confirmed refractive errors in 93% (14/15) and corneal abnormalities in 73% (11/15). CONCLUSIONS: Given nearly universal hypolacrima and additional prominent ocular findings in NGLY1 deficiency, a targeted ocular history and ophthalmologic examination may facilitate prompt diagnosis and early initiation of preventive eye care, preserving vision and overall ocular health.


Subject(s)
Refractive Errors , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Eye Diseases/diagnosis , Eye Diseases/etiology , Longitudinal Studies , Phenotype , Prospective Studies , Refractive Errors/diagnosis , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism
2.
Mov Disord ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576116

ABSTRACT

BACKGROUND: FRMD5 variants were recently identified in patients with developmental delay, ataxia, and eye movement abnormalities. OBJECTIVES: We describe 2 patients presenting with childhood-onset ataxia, nystagmus, and seizures carrying pathogenic de novo FRMD5 variants. Weighted gene co-expression network analysis (WGCNA) was performed to gain insights into the function of FRMD5 in the brain. METHODS: Trio-based whole-exome sequencing was performed in both patients, and CoExp web tool was used to conduct WGCNA. RESULTS: Both patients presented with developmental delay, childhood-onset ataxia, nystagmus, and seizures. Previously unreported findings were diffuse choreoathetosis and dystonia of the hands (patient 1) and areas of abnormal magnetic resonance imaging signal in the white matter (patient 2). WGCNA showed that FRMD5 belongs to gene networks involved in neurodevelopment and oligodendrocyte function. CONCLUSIONS: We expanded the phenotype of FRMD5-related disease and shed light on its role in brain function and development. We recommend including FRMD5 in the genetic workup of childhood-onset ataxia and nystagmus. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Am J Med Genet A ; 191(11): 2743-2748, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37675855

ABSTRACT

Moebius syndrome is a congenital cranial dysinnervation disorder (CCDD) that presents with nonprogressive cranial nerve (CN) VI and VII palsies resulting in facial weakness and inability to abduct the eye(s). While many CCDDs have an underlying genetic cause, the etiology of Moebius syndrome remains unclear as most cases are sporadic. Here, we describe a pair of monochorionic, diamniotic twin girls; one with normal growth and development, and one with micrognathia, reduced facial expression, and poor feeding. Magnetic resonance imaging of the brain performed on the affected twin at 19 months of age showed severely hypoplastic or absent CN IV bilaterally, left CN VI smaller than right, and bilateral hypoplastic CN VII and IX, consistent with a diagnosis of a CCDD, most similar to that of Moebius syndrome. Genomic sequencing was performed on each twin and data was assessed for discordant variants, as well as variants in novel and CCDD-associated genes. No pathogenic, likely pathogenic, or variants of uncertain significance were identified in genes known to be associated with CCDDs or other congenital facial weakness conditions. This family provides further evidence in favor of a stochastic event as the etiology in Moebius syndrome, rather than a monogenic condition.

4.
BMC Pediatr ; 23(1): 453, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37689631

ABSTRACT

BACKGROUND: Microcephaly, epilepsy, and diabetes syndrome (MEDS) is a rare syndromic form of monogenic diabetes caused by bi-allelic loss of function mutations in IER3IP1. In vitro studies have shown that loss of IER31P leads to apoptosis in both neurons and pancreatic ß-cells. Simultaneous management of seizures and diabetes is challenging in patients with MEDS. We present the challenges and successes in the use of ketogenic diet in an infant with insulinopenic diabetes. CASE PRESENTATION: Our term female proband presented at 2 months of age with new onset multifocal seizures followed by the onset of infantile spasms (IS) at 4 months of age. An epilepsy gene panel identified bi-allelic variants, c.239T > G (p.Leu80*) and c.2T > A (initiator codon), in IER3IP1 that were subsequently shown to be inherited in trans. Following initiation of steroid therapy for IS, the patient developed clinically apparent insulin requiring diabetes. Her epilepsy was ultimately refractory to multiple antiseizure medications, thus the ketogenic diet (KD) was initiated. We were able to successfully titrate to a therapeutic KD ratio of 3:1 and maintain a ketotic state without diabetic ketoacidosis (DKA). With intercurrent illnesses, however, the patient had rapid decompensation and mild DKA due to delays in treatment, and for this reason, KD was discontinued after 5 months. CONCLUSIONS: We report two novel IER31P1 mutations in a patient with MEDS and the successful management of the cooccurring conditions of IS and insulinopenic diabetes with the KD. Our experience underscores the importance of careful monitoring during KD as our patient had DKA more easily when on the KD.


Subject(s)
Diabetes Mellitus , Diabetic Ketoacidosis , Diet, Ketogenic , Epilepsy , Microcephaly , Spasms, Infantile , Female , Humans , Infant , Microcephaly/complications , Epilepsy/complications , Diabetic Ketoacidosis/complications , Syndrome , Seizures
5.
Orphanet J Rare Dis ; 18(1): 149, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308910

ABSTRACT

BACKGROUND: We refine the clinical spectrum of FOXG1 syndrome and expand genotype-phenotype correlations through evaluation of 122 individuals enrolled in an international patient registry. METHODS: The FOXG1 syndrome online patient registry allows for remote collection of caregiver-reported outcomes. Inclusion required documentation of a (likely) pathogenic variant in FOXG1. Caregivers were administered a questionnaire to evaluate clinical severity of core features of FOXG1 syndrome. Genotype-phenotype correlations were determined using nonparametric analyses. RESULTS: We studied 122 registry participants with FOXG1 syndrome, aged < 12 months to 24 years. Caregivers described delayed or absent developmental milestone attainment, seizures (61%), and movement disorders (58%). Participants harbouring a missense variant had a milder phenotype. Compared to individuals with gene deletions (0%) or nonsense variants (20%), missense variants were associated with more frequent attainment of sitting (73%). Further, individuals with missense variants (41%) achieved independent walking more frequently than those with gene deletions (0%) or frameshift variants (6%). Presence of epilepsy also varied by genotype and was significantly more common in those with gene deletions (81%) compared to missense variants (47%). Individuals with gene deletions were more likely to have higher seizure burden than other genotypes with 53% reporting daily seizures, even at best control. We also observed that truncations preserving the forkhead DNA binding domain were associated with better developmental outcomes. CONCLUSION: We refine the phenotypic spectrum of neurodevelopmental features associated with FOXG1 syndrome. We strengthen genotype-driven outcomes, where missense variants are associated with a milder clinical course.


Subject(s)
Rett Syndrome , Humans , Genotype , Seizures , Frameshift Mutation , Registries , Nerve Tissue Proteins , Forkhead Transcription Factors
6.
J Inherit Metab Dis ; 45(3): 571-583, 2022 05.
Article in English | MEDLINE | ID: mdl-35243670

ABSTRACT

We delineated the phenotypic spectrum of epilepsy in individuals with NGLY1 deficiency from an international cohort. We collected detailed clinical and electroencephalographic data from 29 individuals with bi-allelic (likely) pathogenic variants in NGLY1 as part of an ongoing prospective natural history study. Participants were evaluated in-person at a single center and/or remotely. Historical medical records were reviewed. Published cases were included for comprehensive phenotyping. Of 29 individuals (mean 11.4 years, range 3-27 years), 17 (58.6%) participants had a history of epilepsy. Seizure onset was in early childhood (mean 43 months, range 2 months to 19 years). The most common seizure types were myoclonic and atonic. Epilepsy course was variable, but 35.2% (6/17) of participants with epilepsy achieved seizure freedom. The most common medications included levetiracetam, valproate, lamotrigine, and clobazam. Electroencephalogram (EEGs) were abnormal in 80% (12/15) of participants with or without epilepsy, although encephalopathy was uncommon. There was a trend in neurodevelopmental outcomes that participants with epilepsy had more developmental delays. In summary, epilepsy is common in NGLY1 deficiency. Over half of the participants had a history of epilepsy and nearly all had EEG abnormalities indicating an increased risk of epilepsy. This work expands the electroclinical phenotype of NGLY1 deficiency and supports a high clinical suspicion for seizures. Some of the more common seizure types (epileptic spasms, myoclonic, and atonic seizures) can be subtle and require counseling to ensure early recognition and treatment to ensure the best possible outcomes. Despite transient liver enzyme abnormalities in this disorder, hepatically metabolized medications were well tolerated.


Subject(s)
Epilepsy , Child, Preschool , Congenital Disorders of Glycosylation , Electroencephalography , Epilepsy/drug therapy , Epilepsy/genetics , Humans , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Phenotype , Prospective Studies , Seizures/genetics
7.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Article in English | MEDLINE | ID: mdl-35347328

ABSTRACT

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Subject(s)
Nanopore Sequencing , Nanopores , Chromosome Mapping , High-Throughput Nucleotide Sequencing/methods , Humans , Whole Genome Sequencing/methods
8.
Brain ; 145(8): 2721-2729, 2022 08 27.
Article in English | MEDLINE | ID: mdl-35293990

ABSTRACT

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVß and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.


Subject(s)
Calcium Channels, N-Type , Epilepsy , Age of Onset , Animals , Calcium , Calcium Channels , Calcium Channels, L-Type , Cell Membrane , Humans , Mammals , Neurons
11.
Am J Med Genet A ; 188(2): 473-487, 2022 02.
Article in English | MEDLINE | ID: mdl-34668327

ABSTRACT

Biallelic pathogenic variants in the TANGO2 (transport and Golgi organization 2 homolog) gene have been identified as causing a rare metabolic disorder characterized by susceptibility to recurrent rhabdomyolysis, lactic acidosis, encephalopathy, and life-threatening tachyarrhythmias. Recently published reports suggest variable clinical severity and phenotypes. This study details five new patients from two families with biallelic pathogenic variants in the TANGO2 gene identified by whole exome sequencing and includes the largest number of affected individuals from a single family reported to date. We document significant intrafamilial variability and highlight that milder phenotypes may be underrecognized. We present biochemical and clinical data to help highlight the features that aid in consideration of this condition in the differential with disorders of fatty acid oxidation. We also present a comprehensive literature review summarizing the molecular, clinical, and biochemical findings for 92 individuals across 13 publications. Of the 27 pathogenic variants reported to date, the recurrent exons 3-9 deletion represents the most common variant seen in 42% of individuals with TANGO2 deficiency. Common clinical features seen in >70% of all individuals include acute metabolic crisis, rhabdomyolysis, neurologic abnormalities, developmental delay, and intellectual disability. Findings such as elevated creatine kinase, hypothyroidism, ketotic hypoglycemia, QT prolongation, or abnormalities of long-chain acylcarnitines and urine dicarboxylic acids should raise clinical suspicion for this life-threatening condition.


Subject(s)
Intellectual Disability , Rhabdomyolysis , Exons , Humans , Intellectual Disability/genetics , Phenotype , Rhabdomyolysis/diagnosis , Rhabdomyolysis/genetics , Exome Sequencing
12.
J Med Genet ; 59(7): 669-677, 2022 07.
Article in English | MEDLINE | ID: mdl-34321324

ABSTRACT

BACKGROUND: Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS: We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Ubiquitin-Protein Ligases , Genotype , Humans , Intellectual Disability/genetics , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Neurodevelopmental Disorders/genetics , Phenotype , Seizures/genetics , Ubiquitin-Protein Ligases/genetics
13.
Genes (Basel) ; 12(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34946879

ABSTRACT

Due to newborn screening for X-linked adrenoleukodystrophy (ALD), and the use of exome sequencing in clinical practice, the detection of variants of unknown significance (VUS) in the ABCD1 gene is increasing. In these cases, functional tests in fibroblasts may help to classify a variant as (likely) benign or pathogenic. We sought to establish reference ranges for these tests in ALD patients and control subjects with the aim of helping to determine the pathogenicity of VUS in ABCD1. Fibroblasts from 36 male patients with confirmed ALD, 26 healthy control subjects and 17 individuals without a family history of ALD, all with an uncertain clinical diagnosis and a VUS identified in ABCD1, were included. We performed a combination of tests: (i) a test for very-long-chain fatty acids (VLCFA) levels, (ii) a D3-C22:0 loading test to study the VLCFA metabolism and (iii) immunoblotting for ALD protein. All ALD patient fibroblasts had elevated VLCFA levels and a reduced peroxisomal ß-oxidation capacity (as measured by the D3-C16:0/D3-C22:0 ratio in the D3-C22:0 loading test) compared to the control subjects. Of the VUS cases, the VLCFA metabolism was not significantly impaired (most test results were within the reference range) in 6/17, the VLCFA metabolism was significantly impaired (most test results were within/near the ALD range) in 9/17 and a definite conclusion could not be drawn in 2/17 of the cases. Biochemical studies in fibroblasts provided clearly defined reference and disease ranges for the VLCFA metabolism. In 15/17 (88%) VUS we were able to classify the variant as being likely benign or pathogenic. This is of great clinical importance as new variants will be detected.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Adrenoleukodystrophy/genetics , Fibroblasts/metabolism , Mutation , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , Adrenoleukodystrophy/metabolism , Adult , Fatty Acids/metabolism , Humans , Male , Middle Aged , Reference Values
14.
Am J Med Genet A ; 185(6): 1848-1853, 2021 06.
Article in English | MEDLINE | ID: mdl-33683010

ABSTRACT

We report three unrelated probands, two male and one female, diagnosed with Aicardi-Goutières syndrome (AGS) after screening positive on California newborn screening (CA NBS) for X-linked adrenoleukodystrophy (X-ALD) due to elevated C26:0 lysophosphatidylcholine (C26:0-LPC). Follow-up evaluation was notable for elevated C26:0, C26:1, and C26:0/C22:0 ratio, and normal red blood cell plasmalogens levels in all three probands. Diagnoses were confirmed by molecular sequencing prior to 12 months of age after clinical evaluation was inconsistent with X-ALD or suggestive of AGS. For at least one proband, the early diagnosis of AGS enabled candidacy for enrollment into a therapeutic clinical trial. This report demonstrates the importance of including AGS on the differential diagnosis for individuals who screen positive for X-ALD, particularly infants with abnormal neurological features, as this age of onset would be highly unusual for X-ALD. While AGS is not included on the Recommended Universal Screening Panel, affected individuals can be identified early through state NBS programs so long as providers are aware of a broader differential that includes AGS. This report is timely, as state NBS algorithms for X-ALD are actively being established, implemented, and refined.


Subject(s)
Adrenoleukodystrophy/blood , Autoimmune Diseases of the Nervous System/blood , Genetic Diseases, X-Linked/blood , Neonatal Screening , Nervous System Malformations/blood , Adrenoleukodystrophy/complications , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/pathology , Autoimmune Diseases of the Nervous System/complications , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/pathology , Dried Blood Spot Testing , Female , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Humans , Infant , Infant, Newborn , Lysophosphatidylcholines/blood , Male , Nervous System Malformations/complications , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Tandem Mass Spectrometry
16.
Neurobiol Dis ; 152: 105299, 2021 05.
Article in English | MEDLINE | ID: mdl-33600953

ABSTRACT

Triosephosphate isomerase (TPI) deficiency (Df) is a rare recessive metabolic disorder that manifests as hemolytic anemia, locomotor impairment, and progressive neurodegeneration. Research suggests that TPI Df mutations, including the "common" TPIE105Dmutation, result in reduced TPI protein stability that appears to underlie disease pathogenesis. Drosophila with the recessive TPIsugarkill allele (a.k.a. sgk or M81T) exhibit progressive locomotor impairment, neuromuscular impairment and reduced longevity, modeling the human disorder. TPIsugarkill produces a functional protein that is degraded by the proteasome. Molecular chaperones, such as Hsp70 and Hsp90, have been shown to contribute to the regulation of TPIsugarkill degradation. In addition, stabilizing the mutant protein through chaperone modulation results in improved TPI deficiency phenotypes. To identify additional regulators of TPIsugarkill degradation, we performed a genome-wide RNAi screen that targeted known and predicted quality control proteins in the cell to identify novel factors that modulate TPIsugarkill turnover. Of the 430 proteins screened, 25 regulators of TPIsugarkill were identified. Interestingly, 10 proteins identified were novel, previously undescribed Drosophila proteins. Proteins involved in co-translational protein quality control and ribosome function were also isolated in the screen, suggesting that TPIsugarkill may undergo co-translational selection for polyubiquitination and proteasomal degradation as a nascent polypeptide. The proteins identified in this study may reveal novel pathways for the degradation of a functional, cytosolic protein by the ubiquitin proteasome system and define therapeutic pathways for TPI Df and other biomedically important diseases.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/metabolism , Carbohydrate Metabolism, Inborn Errors/metabolism , Drosophila Proteins/metabolism , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/metabolism , Animals , Disease Models, Animal , Drosophila melanogaster
17.
J Inherit Metab Dis ; 44(3): 728-739, 2021 05.
Article in English | MEDLINE | ID: mdl-33373467

ABSTRACT

BACKGROUND: Among boys with X-Linked adrenoleukodystrophy, a subset will develop childhood cerebral adrenoleukodystrophy (CCALD). CCALD is typically lethal without hematopoietic stem cell transplant before or soon after symptom onset. We sought to establish evidence-based guidelines detailing the neuroimaging surveillance of boys with neurologically asymptomatic adrenoleukodystrophy. METHODS: To establish the most frequent age and diagnostic neuroimaging modality for CCALD, we completed a meta-analysis of relevant studies published between January 1, 1970 and September 10, 2019. We used the consensus development conference method to incorporate the resulting data into guidelines to inform the timing and techniques for neuroimaging surveillance. Final guideline agreement was defined as >80% consensus. RESULTS: One hundred twenty-three studies met inclusion criteria yielding 1285 patients. The overall mean age of CCALD diagnosis is 7.91 years old. The median age of CCALD diagnosis calculated from individual patient data is 7.0 years old (IQR: 6.0-9.5, n = 349). Ninety percent of patients were diagnosed between 3 and 12. Conventional MRI was most frequently reported, comprised most often of T2-weighted and contrast-enhanced T1-weighted MRI. The expert panel achieved 95.7% consensus on the following surveillance parameters: (a) Obtain an MRI between 12 and 18 months old. (b) Obtain a second MRI 1 year after baseline. (c) Between 3 and 12 years old, obtain a contrast-enhanced MRI every 6 months. (d) After 12 years, obtain an annual MRI. CONCLUSION: Boys with adrenoleukodystrophy identified early in life should be monitored with serial brain MRIs during the period of highest risk for conversion to CCALD.


Subject(s)
Adrenoleukodystrophy/diagnosis , Magnetic Resonance Imaging , Child , Child, Preschool , Consensus Development Conferences as Topic , Humans , Infant , Infant, Newborn , Male , Neonatal Screening/methods
18.
Health Inf Manag ; 50(1-2): 47-54, 2021.
Article in English | MEDLINE | ID: mdl-30124080

ABSTRACT

BACKGROUND: Infantile spasms (IS) is a neurologic disorder of childhood where time to treatment may affect long-term outcomes. Due to the clinical complexity of IS, care can be delayed. OBJECTIVE: To determine if the use of electronic medical record templates (EMRTs) improved care quality in patients treated for IS. METHOD: Records of patients newly diagnosed with IS were retrospectively reviewed both before and after creation of an EMRT for the workup and treatment of IS. Quality of care measures reviewed included delays in treatment plan, medication administration, obtaining neurodiagnostic studies and discharge. The need for repeat neurodiagnostic studies was also assessed. Resident physicians were surveyed regarding template ease of use and functionality. RESULTS: Of 17 patients with IS, 7 received template-based care and 10 did not. Patients in the non-template group had more delays in treatment (p = 0.010), delay in medication administration (p = 0.10), delay in diagnostic studies (p = 0.01) and delay in discharge (p = 0.39). Neurodiagnostic studies needed to be repeated in 5 out of 10 patients in the non-template group and none of the 7 patients in the template group (p = 0.04). Surveyed resident physicians reported improved coordination in care, avoidance of delays in discharge and improved ability to predict side effects of treatment with template use. CONCLUSION: In a single centre, the use of protocolised EMRTs decreased treatment delays and the need for repeated invasive procedures in patients with newly diagnosed IS and was reported as easy to use by resident physicians. IMPLICATIONS: The use of protocolised EMRTs may improve the quality of patient care in IS and other rare diseases.


Subject(s)
Electronic Health Records , Quality of Health Care , Spasms, Infantile , Adult , Checklist , Female , Humans , Infant , Male , Patient Discharge , Quality Improvement , Retrospective Studies , Surveys and Questionnaires
19.
Semin Neurol ; 40(2): 219-235, 2020 04.
Article in English | MEDLINE | ID: mdl-32185789

ABSTRACT

Metabolic disorders represent rare but often treatable causes of seizures and epilepsy of neonatal onset. As seizures are relatively common in the neonatal period, systemic clues to a specific diagnosis may be lacking or shrouded by acute illness. An important role of the consulting pediatric neurologist is to identify neonates with a possible metabolic or otherwise genetic diagnosis. In this review, the authors describe presenting signs and symptoms, a diagnostic framework, and disorder-specific treatment options for inborn errors of metabolism that may present in the neonatal period. Specific attention is given to the neurologic aspects of each condition, including the electroclinical phenotype and findings on brain imaging. As expedited diagnosis and prompt initiation of available therapies have been demonstrated to result in improved epilepsy and developmental outcomes, this work acts as a framework to guide evaluation when an inherited metabolic disorder is suspected. In addition to informing treatment, a definitive diagnosis allows for appropriate counseling regarding prognosis, any associated screening or preventive measures, and family planning.


Subject(s)
Infant, Newborn, Diseases , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/diagnosis , Seizures/etiology , Humans , Infant, Newborn
20.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32197074

ABSTRACT

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Subject(s)
Developmental Disabilities/genetics , Genetic Variation/genetics , Leukoencephalopathies/genetics , Nervous System Malformations/genetics , eIF-2 Kinase/genetics , Adolescent , Ataxia/genetics , Child , Child, Preschool , Female , Hereditary Central Nervous System Demyelinating Diseases/genetics , Humans , Infant , Male , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...