Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541409

ABSTRACT

In metallurgical practice, the material is considered of adequate quality if it meets the customer's expectations. It is necessary to take representative samples and perform quality testing to avoid financial and intangible losses. Sample contamination and matrix and surface quality play a significant role in the accuracy of chemical analyses. The purpose of this paper is to point out the advantages of specific methods of taking samples, such as immersion and spoon sampling of molten metal, and, in the experimental part, to assess the impacts of factors affecting the quality of the sampling. The influence of time of final sampling on determining the true amount of magnesium during a single melt and the influence of duration of mixing of molten cast iron on the accuracy of chemical analysis of the control sample were investigated. It is important that the time between the modification and casting of the liquid cast iron from the casting ladle be as short as possible. This is because the magnesium burns out and thus the chemical analysis of the sample taken is not accurate. Another important factor is ensuring the melt before sampling is homogenized and has the minimum prescribed temperature (1420 °C). Increasing sample collection time will cause changes in its chemical composition.

2.
Toxics ; 11(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37624183

ABSTRACT

Several procedures for extracting content from different waste materials types were investigated, with the aim of evaluating their environmental impact. The waste materials consisted of wastes from bauxite ore processing by means of the Bayer process (red mud, Ajka, Hungary), bauxite ore using the sintering process followed by the Bayer process (brown-red mud, Ziar nad Hronom, Banská Bystrica region, Slovakia) and sulphide ores (metal-rich post-flotation tailing, Lintich, Slovakia). The extraction procedures were carried out with the aim of isolating "mobilizable" fractions using 0.05 M ethylenediaminetetraacetic acid (EDTA) and 0.43 M acetic acid (AA) (representing environmental risk during changes in normal environmental conditions) and "maximum potentially mobilizable" fractions using 2 M HNO3 (representing the total environmental risk). The content of chosen toxic heavy metals (THMs) (Cd, Cr, Cu, Pb, Ni, Zn) and Fe, Mn as metals creating Fe/Mn oxides in the extracts and solutions after microwave digestion was determined using high-resolution continuum source flame atomic absorption spectrometry (HR CS FAAS). On the basis of the results obtained in this study, it is possible to state that different origin of waste materials is reflected in different mobility of toxic heavy metals into the surrounding environment. From the point of view of toxic heavy metals mobility, disposal site of wastes after bauxite processing are much less of a threat to the environment than disposal site of flotation sludge after processing sulphide ores. The single extraction of 0.43 M AA is more effective than the extraction of 0.05 M EDTA for the purposes of determining the content of metals in the mobilizable fraction of tailing waste materials. The mobility of the studied toxic heavy metals in the Lintich tailing decreases in the direction from the lagoon to the dam, which may indicate the fact that the dam serves to a certain extent to inhibit the mobility of metals into the surrounding ecosystem.

3.
Materials (Basel) ; 16(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37109862

ABSTRACT

In the presented article, an electrocoagulation method using a steel cathode and a steel anode was used to obtain chromium from laboratory-prepared model solutions with known compositions. The study aimed to analyze the effect of solution conductivity, pH, and 100% efficiency of chromium removal from the solution, as well as the highest possible Cr/Fe ratio in the final solid product throughout the process of electrocoagulation. Different concentrations of chromium (VI) (100, 1000, and 2500 mg/L) and different pH values (4.5, 6, and 8) were investigated. Various solution conductivities were provided by the addition of 1000, 2000, and 3000 mg/L of NaCl to the studied solutions. Chromium removal efficiency equal to 100% was achieved for all studied model solutions for different experiment times, depending on the selected current intensity. The final solid product contained up to 15% chromium in the form of mixed FeCr hydroxides obtained under optimal experimental conditions: pH = 6, I = 0.1 A, and c (NaCl) = 3000 mg/L. The experiment indicated the advisability of using a pulsed change of electrode polarity, which led to a reduction in the time of the electrocoagulation process. The results may help in the rapid adjustment of the conditions for further electrocoagulation experiments, and they can be used as the optimization experimental matrix.

4.
Environ Monit Assess ; 190(3): 158, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29468425

ABSTRACT

In this work, the matrix characterization (mineralogy, total and local chemical composition, and total organic (TOC) and inorganic carbon (TIC) contents) of different types of sediments from mining- and metallurgy-influenced areas and the assessment of the impact of the matrix on the association of potentially hazardous metals with the mineral phases of these samples, which affect their mobility in the environment, are presented. For these purposes, sediment samples with different origins and from different locations in the environment were analyzed. Anthropogenic sediments from metal-rich post-flotation tailings (Lintich, Slovakia) represent waste from ore processing, natural river sediments from the Hornád River (Kosice, Slovakia) represent areas influenced predominantly by the metallurgical industry, and lake sediments from a water reservoir Ruzín (inflow from the Hornád and Hnilec Rivers, Slovakia) represent the impact of the metallurgical and/or mining industries. The total metal contents were determined by X-ray fluorescence (XRF) analysis, the local chemical and morphological microanalysis by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the TOC and TIC contents by infrared (IR) spectrometry. The mobility/bioavailability of Cu, Pb, and Zn in/from sediments at the studied areas was assessed by ethylenediaminetetraacetic acid (EDTA) and acetic acid (AA) extraction and is discussed in the context of the matrix composition. The contents of selected potentially hazardous elements in the extracts were determined by the high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Metallurgy , Metals, Heavy/analysis , Mining , Water Pollutants, Chemical/analysis , Lakes/chemistry , Minerals/analysis , Rivers/chemistry , Slovakia , Spectrophotometry, Atomic , Trenbolone Acetate/analogs & derivatives
5.
Talanta ; 175: 46-52, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28842017

ABSTRACT

A novel method for determination of platinum species by application of graphite furnace atomic absorption spectrometry (GFAAS) was developed. The principle of determination is the formation of platinum ion associates (IA) with SCN- and polymethine basic agent 1,3,3-trimethyl-2-[3-(1,3,3-trimethyl-1,3-dihydroindol-2-yliden)-propyl-1,3-dienyl]-3H-indolium chloride (TTDI), which can then be extracted by various organic solvents. Different options for analytical signal intensification (ultrasonic and microwave energy) were examined. The conditions found for ion associate formation and extraction have enabled the proposing of a new Pt(II) and Pt(IV) speciation process. These species can be reliably determined simultaneously at concentration ratios from 1:5 to 5:1. Moreover, the ion associates of platinum with TTDI can be extracted with toluene up to a volume ratio of aqueous and organic phases of Vaq:Vorg = 50:1. This fact for Pt determination using GFAAS means decreasing the limit of detection (LOD) from 7.1µgL-1 to 0.3µgL-1. The method was applied for Pt determination in a model and in spiked water samples.

6.
Environ Monit Assess ; 184(2): 1121-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21625924

ABSTRACT

In this work are presented results of the complex study of two significant solid environmental samples: gravitation dust sediments (industrial pollutants, potential source of risk elements input to soils) and soils (component of the environment, potential source of risk elements input to food web). The first phase of this study was focused on the study of the significant chemical properties (phase composition, content of organic and inorganic carbon) of the dust and soil samples. In the second phase, the fractionation analysis was used on the evaluation of the mobility of chosen risk elements (Cu, Ni, Pb, Zn) in the studied samples. The single-step extractions were applied in the order of the isolation of the element forms (fractions), with different mobilities during defined ecological conditions by utilization of the following reagents: 1 mol dm(-3) NH(4)NO(3) for isolation of the "mobile" fraction, 0.05 mol dm(-3) ethylenediaminetetraacetic acid and 0.43 mol dm(-3) CH(3)COOH for isolation of the "mobilizable" fraction, and 2 mol dm(-3) HNO(3) for isolation of all releasable forms. On the basis of the results obtained in this study, it is possible to state that different origins and positions of solid environmental samples in the environment reflect in different chemical properties of their matrix. The different properties of the sample matrix result in different mobilities of risk elements in these kinds of samples. The fractionation analysis with single-step extraction for isolation element fractions is the method most suitable for easy checking of environmental pollution and for evaluation of risk elements cycle in the environment.


Subject(s)
Dust/analysis , Geologic Sediments/chemistry , Soil/chemistry , Environmental Monitoring , Kinetics , Metals, Heavy/analysis , Metals, Heavy/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...