Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(1): e17187, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37909655

ABSTRACT

Understanding the molecular mechanisms underlying individual responses to environmental changes is crucial for species conservation and management. Pelagic fishes including Atlantic herring (Clupea harengus) are of particular interest because of their key ecological and economic roles and their susceptibility to a changing ocean from global warming. Temperature and photoperiod have been linked with spawning time and location in adult herring, but no study has thus far investigated the role of environmental factors on gene regulation during the vulnerable early developmental stages. Here, we examine DNA methylation patterns of larval herring bred under two temperatures (11°C and 13°C) and photoperiod (6 and 12 h) regimes in a 2 × 2 factorial design. We found consistently high levels of global methylation across all individuals and a decline in global methylation with increased developmental stage that was more pronounced at 13°C (p ≤ 0.007) than at 11°C (p ≥ 0.21). Most of the differentially methylated sites were in exon and promoter regions for genes linked to metabolism and development, some of which were hypermethylated at higher temperature. These results demonstrate the important role of DNA methylation during larval development and suggest that this molecular mechanism might be key in regulating early-stage responses to environmental stressors in Atlantic herring.


Subject(s)
Fishes , Photoperiod , Humans , Animals , Temperature , Fishes/physiology , Larva/physiology , Epigenesis, Genetic
2.
Annu Rev Anim Biosci ; 10: 81-106, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34758272

ABSTRACT

Repeatedly and recently evolved sympatric morphs exhibiting consistent phenotypic differences provide natural experimental replicates of speciation. Because such morphs are observed frequently in Salmonidae, this clade provides a rare opportunity to uncover the genomic mechanisms underpinning speciation. Such insight is also critical for conserving salmonid diversity, the loss of which could have significant ecological and economic consequences. Our review suggests that genetic differentiation among sympatric morphs is largely nonparallel apart from a few key genes that may be critical for consistently driving morph differentiation. We discuss alternative levels of parallelism likely underlying consistent morph differentiation and identify several factors that may temper this incipient speciation between sympatric morphs, including glacial history and contemporary selective pressures. Our synthesis demonstrates that salmonids are useful for studying speciation and poses additional research questions to be answered by future study of this family.


Subject(s)
Salmonidae , Animals , Genetic Speciation , Salmonidae/genetics , Sympatry
3.
J Fish Biol ; 82(2): 430-43, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23398060

ABSTRACT

The length and mass ratio, diet and isotopic composition of Aplochiton zebra and Aplochiton taeniatus inhabiting a Salmo trutta-invaded and a S. trutta-free lake in southern Patagonia were compared. Results indicate that S. trutta exercises important trophic interference over A. zebra and A. taeniatus, causing changes in their dietary composition by reducing the consumption of winged Diptera through changes in feeding behaviours that involve jumping out of the water. This effect is significantly higher in A. zebra than in A. taeniatus a species that has a highly specialized diet. The dietary changes of A. zebra and A. taeniatus in sympatry with S. trutta lead to an impoverishment of their isotopic nitrogen signals (δ(15)N), suggesting a reduction of their trophic position. In the case of A. zebra, this translates into a significant decrease in its body condition factor. Such interference could lead to a population decline of this species and would explain the current distribution range decline and allopatry with S. trutta in fluvial systems.


Subject(s)
Diet , Food Chain , Osmeriformes/physiology , Trout/physiology , Animals , Biodiversity , Carbon Isotopes/analysis , Feeding Behavior , Fresh Water/chemistry , Lakes , Nitrogen Isotopes/analysis
4.
J Fish Biol ; 81(5): 1626-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23020565

ABSTRACT

To estimate mortality rates, assess the spatio-temporal dynamics of natural mortality and examine migratory behaviour during the fresh to saltwater transition, 185 wild Atlantic salmon Salmo salar smolts were implanted with coded acoustic transmitters. Seaward migration of tagged S. salar from four river systems in an area of Nova Scotia, Canada known as the Southern Upland was monitored using fixed receivers and active telemetry over 3 years. Cumulative survival through the river, inner estuary, outer estuary and bay habitats averaged 59·6% (range = 39·4-73·5%). When standardized to distance travelled, survival rates followed two patterns: (1) constant rates of survival independent of habitat or (2) low survival most frequently associated with inner estuary habitats. In rivers where survival was independent of habitat, residency periods were also independent of habitat, post-smolts exhibited few upstream movements, took a more direct route to the ocean and reached the ocean rapidly. Alternatively, in rivers where survival was habitat specific, residency was also habitat specific with overall increased residency, more frequent upstream movements and delayed arrival to the open ocean. The sudden disappearance of most (75-100%) smolts and post-smolts assumed dead during the course of this study warrants further examination into the role of avian predators as a mortality vector.


Subject(s)
Animal Migration/physiology , Ecosystem , Salmo salar/physiology , Animals , Behavior, Animal/physiology , Estuaries , Fresh Water , Nova Scotia , Seawater , Survival Analysis
5.
Heredity (Edinb) ; 107(5): 444-55, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21522167

ABSTRACT

The preservation of biodiversity requires an understanding of the maintenance of its components, including genetic diversity. Effective population size determines the amount of genetic variance maintained in populations, but its estimation can be complex, especially when populations are interconnected in a metapopulation. Theory predicts that the effective size of a metapopulation (meta-N(e)) can be decreased or increased by population subdivision, but little empirical work has evaluated these predictions. Here, we use neutral genetic markers and simulations to estimate the effective size of a putative metapopulation in Atlantic salmon (Salmo salar). For a weakly structured set of rivers, we find that meta-N(e) is similar to the sum of local deme sizes, whereas higher genetic differentiation among demes dramatically reduces meta-N(e) estimates. Interdemic demographic processes, such as asymmetrical gene flow, may explain this pattern. However, simulations also suggest that unrecognized population subdivision can also introduce downward bias into empirical estimation, emphasizing the importance of identifying the proper scale of distinct demographic and genetic processes. Under natural patterns of connectivity, evolutionary potential may generally be maintained at higher levels than the local population, with implications for conservation given ongoing species declines and habitat fragmentation.


Subject(s)
Computer Simulation , Models, Genetic , Salmo salar/genetics , Animals , Empirical Research , Female , Gene Flow , Linkage Disequilibrium , Male , Microsatellite Repeats , Newfoundland and Labrador , Population Density , Population Dynamics , Rivers
6.
Heredity (Edinb) ; 106(2): 270-80, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20551979

ABSTRACT

In many marine fish species, genetic population structure is typically weak because populations are large, evolutionarily young and have a high potential for gene flow. We tested whether genetic markers influenced by natural selection are more efficient than the presumed neutral genetic markers to detect population structure in Atlantic herring (Clupea harengus), a migratory pelagic species with large effective population sizes. We compared the spatial and temporal patterns of divergence and statistical power of three traditional genetic marker types, microsatellites, allozymes and mitochondrial DNA, with one microsatellite locus, Cpa112, previously shown to be influenced by divergent selection associated with salinity, and one locus located in the major histocompatibility complex class IIA (MHC-IIA) gene, using the same individuals across analyses. Samples were collected in 2002 and 2003 at two locations in the North Sea, one location in the Skagerrak and one location in the low-saline Baltic Sea. Levels of divergence for putatively neutral markers were generally low, with the exception of single outlier locus/sample combinations; microsatellites were the most statistically powerful markers under neutral expectations. We found no evidence of selection acting on the MHC locus. Cpa112, however, was highly divergent in the Baltic samples. Simulations addressing the statistical power for detecting population divergence showed that when using Cpa112 alone, compared with using eight presumed neutral microsatellite loci, sample sizes could be reduced by up to a tenth while still retaining high statistical power. Our results show that the loci influenced by selection can serve as powerful markers for detecting population structure in high gene-flow marine fish species.


Subject(s)
DNA, Mitochondrial/genetics , Fishes/genetics , Isoenzymes/genetics , Major Histocompatibility Complex/genetics , Microsatellite Repeats , Animals , Genetic Drift , Genetic Markers , Genetic Variation
7.
Mol Ecol ; 10(9): 2107-28, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11555255

ABSTRACT

We examined polymorphism at seven microsatellite loci in 4023 brown trout (Salmo trutta) collected from 32 tributaries to the Limfjord, Denmark (approximately 200 km) and from two hatcheries used for stocking. Populations differ in their estimated sizes and stocking histories. Mean individual inbreeding coefficients do not differ among locations within rivers. Relatedness varies between sites within rivers indicating varied local dynamics at a very small geographical scale. Relatedness is sometimes lower than expected among an equal number of simulated individuals with randomized genotypes, suggesting structure within locations. Five per cent of the genetic variance is distributed among rivers (F(ST) = 0.049), but in the western, less heavily stocked, area of the Limfjord a higher proportion of the genetic variance is distributed among rivers than among locations within rivers. The reverse is true of the eastern, more heavily stocked, area of the Limfjord. Here, a higher proportion of the genetic variance is distributed among locations within rivers than among rivers. Assignment tests reveal that the majority of trout (mean 77% of all fish) are more probably of local origin than hatchery origin but this proportion varies regionally, with rivers in the western area of the Limfjord showing a relatively high (mean 88%) and those in the eastern area showing a relatively low (mean 72%) proportion of locally assigned trout. These results can be interpreted as reflecting stocking impact. Also, the proportion of locally assigned trout correlates with the populations' stocking histories, with rivers presently subjected to stocking (hatchery trout) showing low (mean approximately 0.73), and rivers where stocking was discontinued showing high (mean approximately 0.84) proportions of local fish, probably reflecting lower survival of hatchery than of wild trout. There is evidence for isolation by distance at a large geographical scale when individual river populations are pooled into nine geographical regions but not at a small geographical scale when populations are considered individually. We reject the null hypothesis that stocking has had no impact on population structure but the relatively high proportion of locally assigned trout in populations where stocking with domestic fish no longer takes place suggests limited long-term success of stocking.


Subject(s)
Inbreeding , Polymorphism, Genetic , Trout/genetics , Animals , Denmark , Female , Gene Frequency , Genetic Variation , Male , Microsatellite Repeats , Population Density , Statistics as Topic , Trout/physiology
8.
Mol Ecol ; 9(5): 583-94, 2000 May.
Article in English | MEDLINE | ID: mdl-10792701

ABSTRACT

The effects of stocking hatchery trout into wild populations were studied in a Danish river, using microsatellite and mitochondrial DNA (mtDNA) markers. Baseline samples were taken from hatchery trout and wild trout assumed to be unaffected by previous stocking. Also, samples were taken from resident and sea trout from a stocked section of the river. Genetic differentiation between the hatchery strain and the local wild population was modest (microsatellite FST = 0.06). Using assignment tests, more than 90% of individuals from the baseline samples were classified correctly. Assignment tests involving samples from the stocked river section suggested that the contribution by hatchery trout was low among sea trout (< 7%), but high (46%) among resident trout. Hybrid index analysis and a high percentage of mtDNA haplotypes specific to indigenous trout observed among resident trout that were assigned to the hatchery strain suggested that interbreeding took place between hatchery and wild trout. The latter result also indicated that male hatchery trout contributed more to interbreeding than females. We suggest that stronger selection acts against stocked hatchery trout that become anadromous compared to hatchery trout that become resident. As most resident trout are males this could also explain why gene flow from hatchery to wild trout appeared to be male biased. The results show that even despite modest differentiation at neutral loci domesticated trout may still perform worse than local populations and it is important to be aware of differential survival and reproductive success both between life-history types and between sexes.


Subject(s)
DNA, Mitochondrial/genetics , Microsatellite Repeats , Polymorphism, Genetic , Trout/genetics , Trout/physiology , Animals , Breeding , Female , Fisheries , Genetics, Population , Haplotypes , Hybridization, Genetic , Male , Reproduction
9.
Nature ; 365(6448): 688, 1993 Oct 21.
Article in English | MEDLINE | ID: mdl-8413643
SELECTION OF CITATIONS
SEARCH DETAIL
...