Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Data Brief ; 48: 109158, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37095758

ABSTRACT

This data article is related to the previous research, which addressed the development of a COVID-19 recombinant vaccine candidate. Here, we present the additional data in support of the safety and protective efficacy evaluation of two COVID-19 vaccine candidates based on the coronaviruses' S protein fragments and a structurally modified plant virus - spherical particles. The effectiveness of the experimental vaccines was studied against the SARS-CoV-2 virus in an in vivo infection model in female Syrian hamsters. The body weight of vaccinated laboratory animals was monitored. The histological assessment data of the infected with the SARS-CoV-2 virus hamsters' lungs are provided.

2.
Mol Biol ; 54(2): 243-248, 2020.
Article in English | MEDLINE | ID: mdl-32431461

ABSTRACT

Thanks to their strong immunostimulating properties and safety for humans, plant viruses represent an appropriate basis for the design of novel vaccines. The coat protein of Alternanthera mosaic virus can form virus-like particles that are stable under physiological conditions and have adjuvant properties. This work presents a recombinant human rotavirus A antigen based on the epitope of rotavirus structural protein VP6, using Alternanthera mosaic virus coat protein as a carrier. An expression vector containing the gene of Alternanthera mosaic virus (MU strain) coat protein fused to the epitope of rotavirus protein VP6 was designed. Immunoblot analysis showed that the chimeric protein was effectively recognized by commercial polyclonal antibodies to rotavirus and therefore is a suitable candidate for development of a vaccine prototype. Interaction of the chimeric recombinant protein with the native coat protein of Alternanthera mosaic virus and its RNA resulted in the formation of ribonucleoprotein complexes that were recognized by anti-rotavirus antibodies.

3.
Mol Biol (Mosk) ; 54(2): 278-284, 2020.
Article in Russian | MEDLINE | ID: mdl-32392197

ABSTRACT

Thanks to their strong immunostimulating properties and safety for humans, plant viruses represent an appropriate basis for the design of novel vaccines. The coat protein of Alternanthera mosaic virus can form virus-like particles that are stable under physiological conditions and have adjuvant properties. This work presents a recombinant human rotavirus A antigen based on the epitope of rotavirus structural protein VP6, using Alternanthera mosaic virus coat protein as a carrier. An expression vector containing the gene of Alternanthera mosaic virus (MU strain) coat protein fused to the epitope of rotavirus protein VP6 was designed. Immunoblot analysis showed that the chimeric protein was effectively recognized by commercial polyclonal antibodies to rotavirus and therefore is a suitable candidate for development of a vaccine prototype. Interaction of the chimeric recombinant protein with the native coat protein of Alternanthera mosaic virus and its RNA resulted in the formation of ribonucleoprotein complexes that were recognized by anti-rotavirus antibodies.


Subject(s)
Antigens, Viral/immunology , Capsid Proteins/immunology , Potexvirus/immunology , Rotavirus/immunology , Antibodies, Viral , Humans , Recombinant Proteins/immunology
4.
Data Brief ; 21: 1504-1507, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30510980

ABSTRACT

This data article is related to the research article entitled "Assessment of structurally modified plant virus as a novel adjuvant in toxicity studies" (Nikitin et al., 2018), devoted to the safety study of structurally modified plant virus - spherical particles (SPs). SPs are generated by thermally denatured tobacco mosaic virus (TMV) coat protein and act as effective adjuvant for development of new vaccine candidates. This article reports the additional results on the toxicity studies of TMV SPs. The weight coefficients of laboratory animals internal organs complements the data of the subchronic toxicity studies. Also plaque-forming cell assay, delayed-type hypersensitivity test and peritoneal macrophage assay as a part of immunotoxicity studies of TMV SPs are presented.

5.
Regul Toxicol Pharmacol ; 97: 127-133, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29932979

ABSTRACT

Spherical particles (SPs) generated by thermally denatured tobacco mosaic virus (TMV) coat protein can act as an adjuvant, as they are able to enhance the magnitude and longevity of immune responses to different antigens. Here, the toxicity of TMV SPs was assessed prior to it being offered as a universal safe adjuvant for the development of vaccine candidates. The evaluation included nonclinical studies of a local tolerance following the single administration of TMV SPs, and of the local and systemic effects following repeated administrations of TMV SPs. These were conducted in mice, rats and rabbits. General health status, haematology and blood chemistry parameters were monitored on a regular basis. Also, reproductive and development toxicity were studied. No significant signs of toxicity were detected following single or repeated administrations of the adjuvant (TMV SPs). The absence of toxicological effects following the injection of TMV SPs is promising for the further development of recombinant vaccine candidates with TMV SPs as an adjuvant.


Subject(s)
Capsid Proteins/immunology , Tobacco Mosaic Virus/immunology , Adjuvants, Immunologic , Animals , Capsid Proteins/administration & dosage , Injections, Intramuscular , Macrophages/drug effects , Macrophages/pathology , Mice , Mice, Inbred BALB C , Rabbits , Rats , Rats, Wistar , Tobacco Mosaic Virus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...