Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 129(21): 6827-38, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17488010

ABSTRACT

Side-chain 2H and backbone 15N relaxation data have been collected at multiple temperatures in the samples of the SH3 domain from alpha-spectrin. Combined analyses of the data allowed for determination of the temperature-dependent correlation times tauf characterizing fast methyl motion. Molecular dynamics simulations confirmed that tauf are dominated by methyl rotation; the corresponding activation energies approximate methyl rotation barriers. For 33 methyl groups in the alpha-spectrin SH3 domain the average barrier height was thus determined to be 2.8 +/- 0.9 kcal/mol. This value is deemed representative of the "fluid" hydrophobic protein core where some barriers are increased and others are lowered because of the contacts with surrounding atoms, but there is no local order that could produce systematically higher (lower) barriers. For comparison, the MD simulation predicts the average barrier of 3.1 kcal/mol (calculated via the potential of mean force) or 3.4-3.5 kcal/mol (rigid barriers after appropriate averaging over multiple MD snapshots). The latter result prompted us to investigate rigid methyl rotation barriers in a series of NMR structures from the Protein Databank. In most cases the barriers proved to be higher than expected, 4-6 kcal/mol. To a certain degree, this is caused by tight packing of the side chains in the NMR structures and stems from the structure calculation procedure where the coordinates are first annealed toward the temperature of 0 K and then subjected to energy minimization. In several cases the barriers >10 kcal/mol are indicative of van der Waals violations. The notable exceptions are (i) the structures solved using the GROMOS force field where tight methyl packing is avoided (3.0-3.6 kcal/mol) and (ii) the structure solved by means of the dynamic ensemble refinement method (Lindorff-Larsen, K.; Best, R. B.; DePristo, M. A.; Dobson, C. M.; Vendruscolo, M. Nature 2005, 433, 128) (3.5 kcal/mol). These results demonstrate that methyl rotation barriers, derived from the experiments that are traditionally associated with studies of protein dynamics, can be also used in the context of structural work. This is particularly interesting in view of the recent efforts to incorporate dynamics data in the process of protein structure elucidation.


Subject(s)
Protein Conformation , Spectrin/chemistry , src Homology Domains , Animals , Chickens , Computer Simulation , Deuterium , Models, Chemical , Nuclear Magnetic Resonance, Biomolecular
2.
J Am Chem Soc ; 129(11): 3315-27, 2007 Mar 21.
Article in English | MEDLINE | ID: mdl-17319663

ABSTRACT

Domain mobility plays an essential role in the biological function of multidomain systems. The characteristic times of domain motions fall into the interval from nano- to milliseconds, amenable to NMR studies. Proper analysis of NMR relaxation data for these systems in solution has to account for interdomain motions, in addition to the overall tumbling and local intradomain dynamics. Here we propose a model of interdomain mobility in a multidomain protein, which considers domain reorientations as exchange/interconversion between two distinct conformational states of the molecule, combined with fully anisotropic overall tumbling. Analysis of 15N-relaxation data for Lys48-linked diubiquitin at pH 4.5 and 6.8 showed that this model adequately fits the experimental data and allows characterization of both structural and motional properties of diubiquitin, thus providing information about the relative orientation of ubiquitin domains in both interconverting states. The analysis revealed that the two domains reorient on a time scale of 9-30 ns, with the amplitudes sufficient for allowing a protein ligand access to the binding sites sequestered at the interface in the closed conformation. The analysis of a possible mechanism controlling the equilibrium between the interconverting states in diubiquitin points toward protonation of His68, which results in three different charged states of the molecule, with zero, +e, and +2e net charge. Only two of the three states are noticeably populated at pH 4.5 or 6.8, which assures applicability of the two-state model to diubiquitin at these conditions. We also compare our model with the "extended model-free" approach and discuss possible future developments of the model.


Subject(s)
Models, Chemical , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Structure, Tertiary , Ubiquitins/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Nitrogen Isotopes , Protein Conformation , Protein Structure, Quaternary
3.
J Am Chem Soc ; 128(48): 15432-44, 2006 Dec 06.
Article in English | MEDLINE | ID: mdl-17132010

ABSTRACT

We propose a new computational method for predicting rotational diffusion properties of proteins in solution. The method is based on the idea of representing protein surface as an ellipsoid shell. In contrast to other existing approaches this method uses principal component analysis of protein surface coordinates, which results in a substantial increase in the computational efficiency of the method. Direct comparison with the experimental data as well as with the recent computational approach (Garcia de la Torre; et al. J. Magn. Reson. 2000, B147, 138-146), based on representation of protein surface as a set of small spherical friction elements, shows that the method proposed here reproduces experimental data with at least the same level of accuracy and precision as the other approach, while being approximately 500 times faster. Using the new method we investigated the effect of hydration layer and protein surface topography on the rotational diffusion properties of a protein. We found that a hydration layer constructed of approximately one monolayer of water molecules smoothens the protein surface and effectively doubles the overall tumbling time. We also calculated the rotational diffusion tensors for a set of 841 protein structures representing the known protein folds. Our analysis suggests that an anisotropic rotational diffusion model is generally required for NMR relaxation data analysis in single-domain proteins, and that the axially symmetric model could be sufficient for these purposes in approximately half of the proteins.


Subject(s)
Computational Biology , Models, Chemical , Proteins/chemistry , Anisotropy , Diffusion , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Protein Folding
4.
J Am Chem Soc ; 128(38): 12354-5, 2006 Sep 27.
Article in English | MEDLINE | ID: mdl-16984151

ABSTRACT

Rapid advances in solid-state MAS NMR made it possible to probe protein dynamics on a per-residue basis, similar to solution experiments. In this work we compare methyl 2H relaxation rates measured in the solid and liquid samples of alpha-spectrin SH3 domain. The solution data are treated using a model-free approach to separate the contributions from the overall molecular tumbling and fast internal motion. The latter part forms the basis for comparison with the solid-state data. Although the accuracy of solid-state measurements is limited by deuterium spin diffusion, the results suggest a significant similarity between methyl dynamics in the two samples. This is a potentially important observation, preparing the ground for combined analysis of the dynamics data by solid- and solution-state NMR.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Spectrin/chemistry , Animals , Chickens , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Solutions , Spectrin/biosynthesis , Spectrin/genetics
5.
J Phys Chem B ; 109(12): 6031-5, 2005 Mar 31.
Article in English | MEDLINE | ID: mdl-16851659

ABSTRACT

We discuss the relaxation dynamics of glycerol-water mixtures, as studied by dielectric spectroscopy in the frequency range from 1 Hz to 250 MHz and at temperatures between 173 and 323 K. The experimental results obtained for the glycerol-rich mixtures suggest that the main dielectric relaxation process, as well as the so-called high-frequency "excess wing" (EW) and dc conductivity, follow the same temperature dependence. This result indicates that all of these processes are induced by the same molecular origin. A new phenomenological function is proposed to describe the whole dielectric spectrum in the covered frequency range, and some possible mechanisms of dielectric behaviors through the dc conductivity, the main relaxation process, and the EW are discussed.


Subject(s)
Glycerol/chemistry , Solutions , Water/chemistry , Temperature , Thermodynamics
6.
J Phys Chem B ; 109(18): 9174-7, 2005 May 12.
Article in English | MEDLINE | ID: mdl-16852092

ABSTRACT

The relaxation dynamics of water-rich glycerol-water mixtures is studied by broadband dielectric spectroscopy (BDS) at 173-323 K and differential scanning calorimetry (DSC) at 138-313 K. These data indicate the existence of the critical concentration of 40 mol % glycerol. In the studied temperature range for water-rich glycerol mixtures, the two states of water (ice and interfacial water) are observed in addition to water in the mesoscopic 40 mol % glycerol-water domains. The possible kinetics of water exchange between different water states is discussed in order to explain the mechanism of the broad melting behavior observed by DSC.

SELECTION OF CITATIONS
SEARCH DETAIL
...