Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vavilovskii Zhurnal Genet Selektsii ; 28(1): 108-116, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38465249

ABSTRACT

Throughout history, humans have been attempting to develop the ornamental features of domestic animals in addition to their productive qualities. Many chicken breeds have developed tufts of elongated feathers that jut out from the sides and bottom of the beak, leading to the phenotype known as muffs and beard. It is an incomplete autosomal dominant phenotype determined by the Mb locus localised on chromosome GGA27. This project aimed to analyse the genetic diversity of chicken breeds using full genomic genotyping with the Chicken 60K BeadChip. A total of 53,313 Single Nucleotide Polymorphisms were analysed. DNA was obtained from breeds with the muffs and beard as a marker phenotype: Faverolles (n = 20), Ukrainian Muffed (n = 18), Orloff (n = 20), Novopavlov White (n = 20), and Novopavlov Coloured (n = 15). The Russian White (n = 20) was selected as an alternative breed without the muffs and beard phenotype. The chickens are owned by the Centre of Collective Use "Genetic Collection of Rare and Endangered Breeds of Chickens" (St. Petersburg region, Pushkin), and are also included in the Core Shared Research Facility (CSRF) and/or Large-Scale Research Facility (LSRF). Multidimensional scaling revealed that the Novopavlov White and the Novopavlov Coloured populations formed a separate group. The Ukrainian Muffed and the Orloff have also been combined into a separate group. Based on cluster analysis, with the cross-validation error and the most probable number of clusters K = 4 taken into account, the Orloff was singled out as a separate group. The Ukrainian Muffed exhibited a notable similarity with the Orloff under the same conditions. At K = 5, the populations of the Novopavlov White and the Novopavlov Coloured diverged. Only at K = 6, a distinct and separate cluster was formed by the Ukrainian Muffed. The Russian White had the greatest number of short (1-2 Mb) homozygous regions. If the HOXB8 gene is located between 3.402 and 3.404 Mb on chromosome GGA27, homozygous regions are rarely found in the chickens with the muffs and beard phenotype. Scanning the chicken genome with the Chicken 60K BeadChip provided enough information about the genetic diversity of the chicken breeds for the peculiarities of the development of the ornamental muffs and beard phenotypes in them to be understood. For example, Phoenix bantams, whose tail feathers grow throughout their lives, require greater consideration of husbandry conditions.

2.
J Dairy Sci ; 106(10): 6741-6758, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37236830

ABSTRACT

Studies on the storage stability of milk powder are currently fragmented and mainly affect only the area of above-zero temperatures. At the same time, there are no studies that consider the load factor when milk powder is stored in bags on a pallet. The purpose of this study was to identify the influence of various factors of industrial storage (temperature, height or layer number, and time) on the change in quality and technological properties of powdered dairy products. We placed skim milk powder (SMP) and whole milk powder (WMP) in 10 × 14 × 2 cm resealable plastic bags on a model stand simulating an industrial layout on pallets. The samples were stored for 18 mo at temperatures -30 ± 1°C, 6 ± 1°C, and 25 ± 3°C and 40 to 80% relative humidity. Samples from the control (0), 5, and 10 (lower) layers of pallets were selected for analysis on 0, 3, 6, 9, 12, 15, and 18 mo of storage for each of the temperatures. As a result, we did not detect any changes in the storage process for water activity and mass fraction of moisture. The particle size distribution of all the SMP and WMP samples changed over time. The greatest changes were observed in the WMP samples placed on the 10th layer of pallets at 25 ± 3°C, from 0 to 18 mo of storage, the mean particle size (D[4,3]) increased from 120 to 258 µm (90% of all sample particle sizes ranging from 209 to 559 µm). We found significant clumping in the WMP samples (lumps up to 5 cm), correlating with the layer and storage time. The contact angle of the samples increased from 17° (SMP) and 53° (WMP) to 40° and 71°, respectively. The insolubility index and titratable acidity did not change only in the SMP samples stored with no load applied at -30 ± 1°C and 6 ± 1°C. The heat stability of all samples stored at 25 ± 3°C showed the lowest values. The data obtained allowed us to rank the factors as "layer - time - temperature." Only the temperature of 25 ± 3°C caused critical changes in the product properties. Thus, the possibility of industrial storage of the product for up to 15 mo over the entire temperature range is confirmed.


Subject(s)
Milk , Water , Animals , Powders , Temperature
3.
J Dairy Sci ; 102(12): 10779-10789, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31606218

ABSTRACT

Whole milk powder (WMP) is a universal raw material component that can overcome the problem of seasonality of raw milk. It can be used to provide high-nutritional products to remote areas experiencing a raw milk shortage. Its long shelf life depends on the conditions of storage and transportation, which are recommended to be carried out in a range from 0 to 10°C. At higher temperatures, the quality of WMP deteriorates because of a substantial increase in the degradation of fat and protein fractions. A range of low negative temperatures for storage have not been systematically investigated. Previous studies have shown that freezing WMP results in protein denaturation, crystallization of lactose, and extraction of free fat, all of which reduce the quality characteristics of the product, including deterioration of solubility, quick rancidification, and microbiological changes. However, these previous studies did not simulate the possible situations of transportation and storage of milk powder at low negative temperatures that occur in practice. Given the volume of transportation, distances and climatic characteristics of transportation routes play an important role in WMP preservation. In this study, we simulated storage and transport of WMP at -20°C. The samples were periodically thawed to 10 and 20°C and examined for physicochemical, functional-technological, thermodynamic, microbiological, and organoleptic parameters. Based on our results, storage of WMP at -20°C for 40 d did not have a significant effect on its qualitative characteristics. We observed some compaction of product structure and clustering or clumping, which was reversible by slight mechanical impact. Artificial contamination of the packaging surface with yeast and molds, followed by thawing of the samples, indicated the absence of the contaminants, which was explained by possible redistribution of moisture in the system.


Subject(s)
Dairy Products , Food Storage , Milk , Animals , Cattle , Freezing , Milk/chemistry , Powders , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...