Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Environ Sci Technol ; 56(15): 10987-10996, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35834734

ABSTRACT

Livestock are the largest source of anthropogenic methane (CH4) emissions, and in intensive dairy systems, manure management can contribute half of livestock CH4. Recent policies such as California's short-lived climate pollutant reduction law (SB 1383) and the Global Methane Pledge call for cuts to livestock CH4 by 2030. However, investments in CH4 reduction strategies are primarily aimed at liquid dairy manure, whereas stockpiled solids remain a large source of CH4. Here, we measure the CH4 and net greenhouse gas reduction potential of dairy manure biochar-composting, a novel manure management strategy, through a composting experiment and life-cycle analysis. We found that biochar-composting reduces CH4 by 79%, compared to composting without biochar. In addition to reducing CH4 during composting, we show that the added climate benefit from biochar production and application contributes to a substantially reduced life-cycle global warming potential for biochar-composting: -535 kg CO2e Mg-1 manure compared to -194 kg CO2e Mg-1 for composting and 102 kg CO2e Mg-1 for stockpiling. If biochar-composting replaces manure stockpiling and complements anaerobic digestion, California could meet SB 1383 with 132 less digesters. When scaled up globally, biochar-composting could mitigate 1.59 Tg CH4 yr-1 while doubling the climate change mitigation potential from dairy manure management.


Subject(s)
Composting , Manure , Charcoal , Goals , Methane , Soil , Wood
3.
J Environ Qual ; 50(5): 1084-1096, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34292633

ABSTRACT

Astudy was conducted in three agroecosystems in California (Sacramento, Solano, and Merced counties) that received biosolids applications for 20 yr. Management varied in application rates and frequencies, resulting in average cumulative amount of biosolids applied of 74 (Solano), 105 (Merced), and 359 (Sacramento) Mg biosolidsdry ha-1 , resulting in the addition of 26 (Solano), 36 (Merced), and 125 (Sacramento) Mg biosolids-C ha-1 . Measurements included soil organic carbon (SOC) and total nitrogen (N) concentrations from 0 to 100 cm and microbial biomass C (MBC) and microbial biomass N (MBN) from 0 to 30 cm in biosolids-amended and control sites. Biosolids treatments had greater amounts of SOC and total N at all sites, and MBC and MBN were greatest at Sacramento and Solano. The largest increases in SOC were at the site that received the lowest cumulative loading rate of biosolids (Solano), where SOC content to 100 cm was 50% greater in amended soils (p < .001). Net changes in soil C stocks to 30 cm were 0.4 ± 0.1 (Solano), -0.04 ± 0.1 (Merced), and 0.3 ± 0.2 (Sacramento) Mg C ha-1 yr-1 . These values change when considering deeper soil depths (0-100 cm) to 0.5 ± 0.1 (Solano), 0.2 ± 0.2 (Merced), and 0.216 ± 0.2 (Sacramento) Mg C ha-1 yr-1 , reflecting differences in C stocks changes in surface and subsurface soils across sites. Rates of C storage per dry Mg of biosolids per year applied were 1 ± 0.2 (Solano), 0.5 ± 0.4 (Merced), and 0.04 ± 0.1 (Sacramento). Our results suggest that local controls on soil C stabilization are more important than amendment application amount at predicting climate benefits and that accounting for soil C changes below 30 cm can provide insight for sequestering C in agroecosystems.


Subject(s)
Carbon , Soil , Biosolids , Fertilizers , Nitrogen/analysis
4.
Glob Chang Biol ; 27(9): 1721-1736, 2021 05.
Article in English | MEDLINE | ID: mdl-33657680

ABSTRACT

The global demand for beef is rapidly increasing (FAO, 2019), raising concern about climate change impacts (Clark et al., 2020; Leip et al., 2015; Springmann et al., 2018). Beef and dairy contribute over 70% of livestock greenhouse gas emissions (GHG), which collectively contribute ~6.3 Gt CO2 -eq/year (Gerber et al., 2013; Herrero et al., 2016) and account for 14%-18% of human GHG emissions (Friedlingstein et al., 2019; Gerber et al., 2013). The utility of beef GHG mitigation strategies, such as land-based carbon (C) sequestration and increased production efficiency, are actively debated (Garnett et al., 2017). We compiled 292 local comparisons of "improved" versus "conventional" beef production systems across global regions, assessing net GHG emission data from Life Cycle Assessment (LCA) studies. Our results indicate that net beef GHG emissions could be reduced substantially via changes in management. Overall, a 46 % reduction in net GHG emissions per unit of beef was achieved at sites using carbon (C) sequestration management strategies on grazed lands, and an 8% reduction in net GHGs was achieved at sites using growth efficiency strategies. However, net-zero emissions were only achieved in 2% of studies. Among regions, studies from Brazil had the greatest improvement, with management strategies for C sequestration and efficiency reducing beef GHG emissions by 57%. In the United States, C sequestration strategies reduced beef GHG emissions by over 100% (net-zero emissions) in a few grazing systems, whereas efficiency strategies were not successful at reducing GHGs, possibly because of high baseline efficiency in the region. This meta-analysis offers insight into pathways to substantially reduce beef production's global GHG emissions. Nonetheless, even if these improved land-based and efficiency management strategies could be fully applied globally, the trajectory of growth in beef demand will likely more than offset GHG emissions reductions and lead to further warming unless there is also reduced beef consumption.


Subject(s)
Greenhouse Effect , Greenhouse Gases , Animals , Brazil , Carbon Sequestration , Cattle , Humans , Life Cycle Stages
5.
Environ Sci Technol ; 54(7): 4545-4553, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32162912

ABSTRACT

California's landmark waste diversion law, SB 1383, mandates the diversion of 75% of organic waste entering landfills by 2025. Much of this organic waste will likely be composted and applied to farms. However, compost is expensive and energy intensive to transport, which limits the distance that compost can be shipped. Though the diversion of organic waste from landfills in California has the potential to significantly reduce methane emissions, it is unclear if enough farmland exists in close proximity to each city for the distribution of compost. To address this knowledge gap, we develop the Compost Allocation Network (CAN), a geospatial model that simulates the production and transport of waste for all California cities and farms across a range of scenarios for per capita waste production, compost application rate, and composting conversion rate. We applied this model to answer two questions: how much farmland can be applied with municipal compost and what percentage of the diverted organic waste can be used to supplement local farmland. The results suggest that a composting system that recycles nutrients between cities and local farms has the potential to play a major role in helping California meet SB 1383 while reducing state emissions by -6.3 ± 10.1 MMT CO2e annually.


Subject(s)
Composting , California , Cities , Farms , Soil
6.
J Environ Qual ; 48(3): 727-734, 2019 May.
Article in English | MEDLINE | ID: mdl-31180429

ABSTRACT

Biochar has been promoted as a means to sequester C and improve soil quality. Biochar produced from agricultural waste streams and recycled as a soil amendment also provides a strategy for improved nutrient management in agricultural systems. The effects of biochar amendment on soil C and N cycling remain poorly constrained. This study aimed to examine the effects of biochar on soil C and N storage, N mineralization, and soil physiochemical properties. Soils were collected from a field experiment in which biochar derived from poultry manure was applied for 2 yr in two croplands differing in soil texture (sandy and silt-loam). Samples from biochar-amended and control soils were physically fractionated to separate water-stable soil aggregates and analyzed for C and N. Biochar amendments increased total soil C by 16 (sandy soil) and 30% (silt-loam soil). These increases were observed in aggregate size classes associated with short-term C and N storage in silt-loam soils and intermediate-term C and N storage in sandy soils. Net N mineralization rates observed in a short-term incubation were small or negative (1.79 and -24.7 µg N g soil for sandy and silt-loam soils, respectively), indicating little or no new N mineralization from biochar over short timescales. Biochar amendment had a positive impact on cation exchange capacity at both sites, increasing it by 7 and 11% in the silt-loam soil and sandy soil, respectively. These results suggest that biochar amendments to cropping systems can improve the capacity of soil to retain nutrients and store C and N.


Subject(s)
Manure , Soil , Animals , Carbon , Charcoal , Nitrogen
7.
Glob Chang Biol ; 24(2): e705-e718, 2018 02.
Article in English | MEDLINE | ID: mdl-28981192

ABSTRACT

Soil organic matter (SOM) supports the Earth's ability to sustain terrestrial ecosystems, provide food and fiber, and retains the largest pool of actively cycling carbon. Over 75% of the soil organic carbon (SOC) in the top meter of soil is directly affected by human land use. Large land areas have lost SOC as a result of land use practices, yet there are compensatory opportunities to enhance productivity and SOC storage in degraded lands through improved management practices. Large areas with and without intentional management are also being subjected to rapid changes in climate, making many SOC stocks vulnerable to losses by decomposition or disturbance. In order to quantify potential SOC losses or sequestration at field, regional, and global scales, measurements for detecting changes in SOC are needed. Such measurements and soil-management best practices should be based on well established and emerging scientific understanding of processes of C stabilization and destabilization over various timescales, soil types, and spatial scales. As newly engaged members of the International Soil Carbon Network, we have identified gaps in data, modeling, and communication that underscore the need for an open, shared network to frame and guide the study of SOM and SOC and their management for sustained production and climate regulation.


Subject(s)
Carbon Sequestration , Carbon/chemistry , Ecosystem , International Cooperation , Soil/chemistry , Agriculture , Carbon Cycle , Climate , Climate Change , Databases, Factual , Models, Theoretical
8.
Sustainability (New Rochelle) ; 10(2): 79-88, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-29350216

ABSTRACT

Anthropogenic sources of reactive nitrogen have local and global impacts on air and water quality and detrimental effects on human and ecosystem health. This article uses the Nitrogen Footprint Tool (NFT) to determine the amount of nitrogen (N) released as a result of institutional consumption. The sectors accounted for include food (consumption and upstream production), energy, transportation, fertilizer, research animals, and agricultural research. The NFT is then used for scenario analysis to manage and track reductions, which are driven by the consumption behaviors of both the institution itself and its constituent individuals. In this article, the first seven completed institution nitrogen footprint results are presented. The Nitrogen Footprint Tool Network aims to develop footprints for many institutions to encourage widespread upper-level management strategies that will create significant reductions in reactive nitrogen released to the environment. Energy use and food purchases are the two largest sectors contributing to institution nitrogen footprints. Ongoing efforts by institutions to reduce greenhouse gas emissions also help to reduce the nitrogen footprint, but the impact of food production on nitrogen pollution has not been directly addressed by the higher education sustainability community. The Nitrogen Footprint Tool Network found that institutions could reduce their nitrogen footprints by optimizing food purchasing to reduce consumption of animal products and minimize food waste, as well as by reducing dependence on fossil fuels for energy.

9.
Ecol Appl ; 25(2): 531-45, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26263673

ABSTRACT

Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Poaceae , Computer Simulation , Models, Theoretical , Reproducibility of Results , Soil , Time Factors
10.
Ecol Appl ; 23(1): 46-59, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23495635

ABSTRACT

Most of the world's grasslands are managed for livestock production. A critical component of the long-term sustainability and profitability of rangelands (e.g., grazed grassland ecosystems) is the maintenance of plant production. Amending grassland soils with organic waste has been proposed as a means to increase net primary productivity (NPP) and ecosystem carbon (C) storage, while mitigating greenhouse gas emissions from waste management. Few studies have evaluated the effects of amendments on the C balance and greenhouse gas dynamics of grasslands. We used field manipulations replicated within and across two rangelands (a valley grassland and a coastal grassland) to determine the effects of a single application of composted green waste amendments on NPP and greenhouse gas emissions over three years. Amendments elevated total soil respiration by 18% +/- 4% at both sites but had no effect on nitrous oxide or methane emissions. Carbon losses were significantly offset by greater and sustained plant production. Amendments stimulated both above- and belowground NPP by 2.1 +/- 0.8 Mg C/ha to 4.7 +/- 0.7 Mg C/ha (mean +/- SE) over the three-year study period. Net ecosystem C storage increased by 25-70% without including the direct addition of compost C. The estimated magnitude of net ecosystem C storage was sensitive to estimates of heterotrophic soil respiration but was greater than controls in five out of six fields that received amendments. The sixth plot was the only one that exhibited lower soil moisture than the control, suggesting an important role of water limitation in these seasonally dry ecosystems. Treatment effects persisted over the course of the study, which were likely derived from increased water-holding capacity in most plots, and slow-release fertilization from compost decomposition. We conclude that a single application of composted organic matter can significantly increase grassland C storage, and that effects of a single application are likely to carry over in time.


Subject(s)
Ecosystem , Gases , Greenhouse Effect , Poaceae/physiology , Carbon , Carbon Cycle , Environmental Monitoring , Refuse Disposal , Soil , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...