Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 343: 123273, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38160771

ABSTRACT

Studies of recovery from acidic deposition have focused on reversal of acidification and its associated effects, but as recovery proceeds slowly, chemical dilution of surface waters is emerging as a key factor in the recovery process that has significant chemical and biological implications. This investigation uses long-term chemical records from 130 streams in the Adirondack region of New York, USA, to evaluate the role of ongoing decreases in conductance, an index of dilution, in the recovery of these streams. Stream chemistry data spanning up to 40 years (1980s-2022) showed that acid-neutralizing capacity has increased in 92% of randomly selected streams, but that harmful levels of acidification still occur in 37% of these streams. Conductance and Ca2+ concentrations decreased in 79% of streams, and SO42- concentrations in streams continued to show strong decreases but remained several times higher than concentrations in precipitation. These changes were ongoing through 2022 even though acidic deposition levels were approaching those estimated for pre-industrialization. Further dilution is continuing through ongoing decreases in stream SO42-. Nevertheless, Ca2+ continued to be leached from soils by SO42-, organic acids and NO3-, limiting the replenishment of available soil Ca2+, a prerequisite to stem further dilution of stream water.


Subject(s)
Fresh Water , Rivers , Hydrogen-Ion Concentration , Water , Organic Chemicals , Acids , Soil , Environmental Monitoring
2.
Sci Total Environ ; 807(Pt 2): 150785, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34653451

ABSTRACT

Salmon aquaculture is an important economic activity globally where local freshwater supplies permit land-based salmon aquaculture facilities to cultivate early life stage salmon. Nitrogen, phosphorus and organic matter in aquaculture effluents contribute to the eutrophication of adjacent and downstream rivers and lakes. This study quantifies the enrichment of nutrients in land-based salmon aquaculture facility effluents compared to receiving waters. We measured nutrient concentrations and dissolved organic matter (DOM) quantity and quality via fluorescence spectroscopy in streams and effluent waters associated with 27 facilities in Chile. We found that facilities added on average 0.9 (s.d. = 2.0) mg-C L-1, 542 (s.d. = 637) µg-total N L-1, and 104 (s.d. = 104) µg-total P L-1 to effluents compared to stream waters. DOM in stream water was enriched in humic-like fluorescence, while aquaculture effluents were enriched in protein-like DOM fluorophores. Principal component and correlation analysis revealed that tryptophan-like fluorescence was a good predictor of total N and P in effluents, but the strength of significant linear relationships varied among individual facilities (r2: 0.2 to 0.9). Agreement between laboratory fluorescence and a portable fluorometer indicates the utility of in-situ sensors for monitoring of both tryptophan-like fluorescence and covarying nutrients in effluents. Thus, continuous in-situ sensors are likely to improve industry management and allow more robust estimates of aquaculture-derived nutrients delivered to receiving waters.


Subject(s)
Dissolved Organic Matter , Nutrients , Aquaculture , Fluorescence , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL
...