Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 33(3): 749-761, 2019 03.
Article in English | MEDLINE | ID: mdl-30254339

ABSTRACT

Mobilization of hematopoietic stem cells (HSCs) from bone marrow (BM) to peripheral blood (PB) by cytokine granulocyte colony-stimulating factor (G-CSF) or the chemical antagonist of CXCR4, AMD3100, is important in the treatment of blood diseases. Due to clinical conditions of each application, there is a need for continued improvement of HSC mobilization regimens. Previous studies have shown that genetic ablation of the Rho GTPase Cdc42 in HSCs results in their mobilization without affecting survival. Here we rationally identified a Cdc42 activity-specific inhibitor (CASIN) that can bind to Cdc42 with submicromolar affinity and competitively interfere with guanine nucleotide exchange activity. CASIN inhibits intracellular Cdc42 activity specifically and transiently to induce murine hematopoietic stem/progenitor cell egress from the BM by suppressing actin polymerization, adhesion, and directional migration of stem/progenitor cells, conferring Cdc42 knockout phenotypes. We further show that, although, CASIN administration to mice mobilizes similar number of phenotypic HSCs as AMD3100, it produces HSCs with better long-term reconstitution potential than that by AMD3100. Our work validates a specific small molecule inhibitor for Cdc42, and demonstrates that signaling molecules downstream of cytokines and chemokines, such as Cdc42, constitute a useful target for long-term stem cell mobilization.


Subject(s)
Hematopoietic Stem Cells/drug effects , Small Molecule Libraries/pharmacology , cdc42 GTP-Binding Protein/antagonists & inhibitors , Animals , Benzylamines , Bone Marrow/drug effects , Bone Marrow/metabolism , Cell Movement/drug effects , Cyclams , Cytokines/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Heterocyclic Compounds/pharmacology , Mice , Mice, Inbred C57BL , Stem Cells/drug effects , Stem Cells/metabolism
2.
Cell Rep ; 13(11): 2412-2424, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26686632

ABSTRACT

Whether aged hematopoietic stem and progenitor cells (HSPCs) have impaired DNA damage repair is controversial. Using a combination of DNA mutation indicator assays, we observe a 2- to 3-fold increase in the number of DNA mutations in the hematopoietic system upon aging. Young and aged hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) do not show an increase in mutation upon irradiation-induced DNA damage repair, and young and aged HSPCs respond very similarly to DNA damage with respect to cell-cycle checkpoint activation and apoptosis. Both young and aged HSPCs show impaired activation of the DNA-damage-induced G1-S checkpoint. Induction of chronic DNA double-strand breaks by zinc-finger nucleases suggests that HSPCs undergo apoptosis rather than faulty repair. These data reveal a protective mechanism in both the young and aged hematopoietic system against accumulation of mutations in response to DNA damage.


Subject(s)
Aging , Genome , Hematopoietic Stem Cells/metabolism , Amino Acid Sequence , Animals , Apoptosis/radiation effects , Bone Marrow Cells/cytology , Bone Marrow Transplantation , Cells, Cultured , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , DNA Damage/radiation effects , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , G1 Phase Cell Cycle Checkpoints/radiation effects , Gamma Rays , Hematopoietic Stem Cells/cytology , Loss of Heterozygosity , Mice , Mice, Inbred C57BL , Mutation , S Phase Cell Cycle Checkpoints/radiation effects , Transplantation, Homologous , Whole-Body Irradiation
3.
Nat Med ; 18(7): 1123-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22729286

ABSTRACT

Tissue damage induced by ionizing radiation in the hematopoietic and gastrointestinal systems is the major cause of lethality in radiological emergency scenarios and underlies some deleterious side effects in patients undergoing radiation therapy. The identification of target-specific interventions that confer radiomitigating activity is an unmet challenge. Here we identify the thrombomodulin (Thbd)-activated protein C (aPC) pathway as a new mechanism for the mitigation of total body irradiation (TBI)-induced mortality. Although the effects of the endogenous Thbd-aPC pathway were largely confined to the local microenvironment of Thbd-expressing cells, systemic administration of soluble Thbd or aPC could reproduce and augment the radioprotective effect of the endogenous Thbd-aPC pathway. Therapeutic administration of recombinant, soluble Thbd or aPC to lethally irradiated wild-type mice resulted in an accelerated recovery of hematopoietic progenitor activity in bone marrow and a mitigation of lethal TBI. Starting infusion of aPC as late as 24 h after exposure to radiation was sufficient to mitigate radiation-induced mortality in these mice. These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd or aPC might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation.


Subject(s)
Protein C/antagonists & inhibitors , Radiation Injuries/prevention & control , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Thrombomodulin/antagonists & inhibitors , Animals , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Mice , Mice, Inbred C57BL , Protein C/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Radiation Injuries/genetics , Radiation Injuries/pathology , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Receptors, Thrombin , Survival Analysis , Thrombomodulin/genetics , Thrombomodulin/metabolism , Whole-Body Irradiation
4.
Nat Med ; 16(10): 1141-6, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20871610

ABSTRACT

Mobilization of hematopoietic stem and progenitor cells (HSPCs) from bone marrow into peripheral blood by the cytokine granulocyte colony-stimulating factor (G-CSF) has become the preferred source of HSPCs for stem cell transplants. However, G-CSF fails to mobilize sufficient numbers of stem cells in up to 10% of donors, precluding autologous transplantation in those donors or substantially delaying transplant recovery time. Consequently, new regimens are needed to increase the number of stem cells in peripheral blood upon mobilization. Using a forward genetic approach in mice, we mapped the gene encoding the epidermal growth factor receptor (Egfr) to a genetic region modifying G-CSF-mediated HSPC mobilization. Amounts of EGFR in HSPCs inversely correlated with the cells' ability to be mobilized by G-CSF, implying a negative role for EGFR signaling in mobilization. In combination with G-CSF treatment, genetic reduction of EGFR activity in HSPCs (in waved-2 mutant mice) or treatment with the EGFR inhibitor erlotinib increased mobilization. Increased mobilization due to suppression of EGFR activity correlated with reduced activity of cell division control protein-42 (Cdc42), and genetic Cdc42 deficiency in vivo also enhanced G-CSF-induced mobilization. Our findings reveal a previously unknown signaling pathway regulating stem cell mobilization and provide a new pharmacological approach for improving HSPC mobilization and thereby transplantation outcomes.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization , Signal Transduction , Animals , Epidermal Growth Factor/pharmacology , ErbB Receptors/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , cdc42 GTP-Binding Protein/physiology
5.
Blood ; 114(2): 290-8, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19357397

ABSTRACT

Aged hematopoietic stem cells (HSCs) are impaired in supporting hematopoiesis. The molecular and cellular mechanisms of stem cell aging are not well defined. HSCs interact with nonhematopoietic stroma cells in the bone marrow forming the niche. Interactions of hematopoietic cells with the stroma/microenvironment inside bone cavities are central to hematopoiesis as they regulate cell proliferation, self-renewal, and differentiation. We recently hypothesized that one underlying cause of altered hematopoiesis in aging might be due to altered interactions of aged stem cells with the microenvironment/niche. We developed time-lapse 2-photon microscopy and novel image analysis algorithms to quantify the dynamics of young and aged hematopoietic cells inside the marrow of long bones of mice in vivo. We report in this study that aged early hematopoietic progenitor cells (eHPCs) present with increased cell protrusion movement in vivo and localize more distantly to the endosteum compared with young eHPCs. This correlated with reduced adhesion to stroma cells as well as reduced cell polarity upon adhesion of aged eHPCs. These data support a role of altered eHPC dynamics and altered cell polarity, and thus altered niche biology in mechanisms of mammalian aging.


Subject(s)
Aging/physiology , Bone and Bones/cytology , Hematopoietic Stem Cells/cytology , Animals , Cell Movement , Macrophages/cytology , Mice , Time Factors
6.
Blood ; 108(7): 2190-7, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16741255

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) are located in the bone marrow in close association with a highly organized 3-dimensional structure formed by stroma cells, referred to as the niche. Mobilization of HSPCs from bone marrow to peripheral blood in response to granulocyte colony-stimulating factor (G-CSF) requires de-adhesion of HSPCs from the niche. The influence of aging of HSPCs on cell-stroma interactions has not been determined in detail. Using a mouse model of G-CSF-induced mobilization, we demonstrated that the ability to mobilize hematopoietic stem cells is approximately 5-fold greater in aged mice. Competitive mobilization experiments confirmed that enhanced mobilization ability was intrinsic to the stem cell. Enhanced mobilization efficiency of primitive hematopoietic cells from aged mice correlated with reduced adhesion of hematopoietic progenitor cells to stroma and with elevated levels of GTP-bound Cdc42. These results might indicate that stroma-stem cell interactions are dynamic over a lifetime and result in physiologically relevant changes in the biology of primitive hematopoietic cells with age.


Subject(s)
Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/cytology , Aging , Animals , Cell Adhesion , Cell Movement , Granulocyte Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Models, Biological , Stem Cells/cytology , cdc42 GTP-Binding Protein/metabolism , rho GTP-Binding Proteins/metabolism
7.
Biophys J ; 90(1): 238-49, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16214863

ABSTRACT

Surfactant protein SP-B is absolutely required for the surface activity of pulmonary surfactant and postnatal lung function. The results of a previous study indicated that the N-terminal segment of SP-B, comprising residues 1-9, is specifically required for surface activity, and suggested that prolines 2, 4, and 6 as well as tryptophan 9, may constitute essential structural motifs for protein function. In this work, we assessed the role of these two motifs in promoting the formation and maintenance of surface-active films. Three synthetic peptides were synthesized including a peptide corresponding to the N-terminal 37 amino acids of native SP-B and two variants in which prolines 2, 4, 6, or tryptophan 9 were substituted by alanines. All three synthetic peptides were surface-active, as expected from their amphipathic structure. The peptides were also able to insert into dipalmitoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol (7:3 w/w ratio) monolayers preformed at pressures >30 mN/m, indicating that they perturb and insert into membranes. Substitution of alanine for tryptophan at position 9 significantly decreased both the rate of adsorption/insertion of the peptide into the interface and reinsertion of surface-active material excluded from the film during successive compression-expansion cycles. Substitution of alanines for prolines at positions 2, 4, and 6 did not produce substantial changes in the rate of adsorption/insertion; however, reinsertion of surface-active material into the expanding interface film was not as effective as in the presence of the nativelike peptide. These results suggest that W9 is critical for optimal interface affinity, whereas prolines may promote a conformation that facilitates rapid insertion of the peptide into phospholipid monolayers compressed to the highest pressures during compression-expansion cycling.


Subject(s)
Pulmonary Surfactant-Associated Protein B/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Adsorption , Alanine/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Circular Dichroism , Humans , Kinetics , Lipid Bilayers/chemistry , Molecular Sequence Data , Peptides/chemistry , Phosphatidylglycerols/chemistry , Phospholipids/chemistry , Pressure , Proline/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship , Time Factors , Tryptophan/chemistry , Ultraviolet Rays
8.
J Immunol ; 176(1): 416-25, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16365435

ABSTRACT

Surfactant protein B (SP-B) is secreted into the airspaces with surfactant phospholipids where it reduces surface tension and prevents alveolar collapse at end expiration. SP-B is a member of the saposin-like family of proteins, several of which have antimicrobial properties. SP-B lyses negatively charged liposomes and was previously reported to inhibit the growth of Escherichia coli in vitro; however, a separate study indicated that elevated levels of SP-B in the airspaces of transgenic mice did not confer resistance to infection. The goal of this study was to assess the antimicrobial properties of native SP-B and synthetic peptides derived from the native peptide. Native SP-B aggregated and killed clinical isolates of Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and group B streptococcus by increasing membrane permeability; however, SP-B also lysed RBC, indicating that the membranolytic activity was not selective for bacteria. Both the antimicrobial and hemolytic activities of native SP-B were inhibited by surfactant phospholipids, suggesting that endogenous SP-B may not play a significant role in alveolar host defense. Synthetic peptides derived from native SP-B were effective at killing both Gram-positive and Gram-negative bacteria at low peptide concentrations (0.15-5.0 microM). The SP-B derivatives selectively lysed bacterial membranes and were more resistant to inhibition by phospholipids; furthermore, helix 1 (residues 7-22) retained significant antimicrobial activity in the presence of native surfactant. These results suggest that the role of endogenous SP-B in host defense may be limited; however, synthetic peptides derived from SP-B may be useful in the treatment of bacterial pneumonias.


Subject(s)
Anti-Infective Agents/pharmacology , Bacteria/drug effects , Peptides/pharmacology , Pulmonary Surfactant-Associated Protein B/pharmacology , Amino Acid Sequence , Animals , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Peptides/genetics , Pulmonary Surfactant-Associated Protein B/genetics
9.
Biochemistry ; 44(3): 861-72, 2005 Jan 25.
Article in English | MEDLINE | ID: mdl-15654742

ABSTRACT

Surfactant protein B (SP-B) is a hydrophobic, 79 amino acid peptide that regulates the structure and function of surfactant phospholipid membranes in the airspaces of the lung. Addition of SP-B to liposomes composed of DPPC/PG (7:3) leads to membrane binding, destabilization, and fusion, ultimately resulting in rearrangement of membrane structure. The goal of this study was to map the fusogenic and lytic domains of SP-B and assess the effects of altered fusion and lysis on surface activity. Synthetic peptides were generated to predicted helices and/or interhelical loops of SP-B and tested for fusion, lytic, and surface activities. The N-terminal half of SP-B (residues 1-37), which includes the nonhelical N-terminal amino acids in addition to helices 1 and 2, promoted rapid liposome fusion whereas shorter peptides were significantly less effective. The requirements for optimal surface tension reduction were similar to those for fusion; in contrast, helix 1 (residues 7-22) alone was sufficient for liposome lysis. The C-terminal half of SP-B (residues 43-79), which includes helices 3, 4, and 5, exhibited significantly lower levels of fusogenic, lytic, and surface tension reducing activities compared to the N-terminal region. These results indicate that SP-B fusion, lytic and surface activities map predominantly to the N-terminal half of SP-B. Amino acid substitutions in synthetic peptides corresponding to the N-terminal half of SP-B indicated that, in general, decreased fusion or lytic activities were associated with altered surface tension reducing properties of the peptide. However, the presence of fusion and lytic activities alone could not account for the surface tension reducing property of SP-B. We propose a model in which association of helix 1 with lipids leads to membrane permeabilization but not aggregation; helix 2 mediates membrane cross-linking (aggregation), which, in turn, facilitates lipid mixing, membrane fusion, and interfacial adsorption/surface tension reduction.


Subject(s)
Pulmonary Surfactant-Associated Protein B/chemistry , Amino Acid Sequence , Humans , Liposomes , Molecular Sequence Data , Sequence Homology, Amino Acid , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...