Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
J Nanomed Nanotechnol ; 8(4)2017 Aug.
Article in English | MEDLINE | ID: mdl-28966869

ABSTRACT

Nanodisks (ND) are ternary complexes of phospholipid, one or more hydrophobic bioactive agents and an apolipoprotein scaffold. These nanoscale assemblies are organized as a disk-shaped lipid bilayer whose perimeter is stabilized by an apolipoprotein scaffold. Solubilization of hydrophobic bioactive agents is achieved by their integration into the ND lipid milieu. When the cis-imidazoline, nutlin-3a, was incubated with phosphatidylcholine and apolipoprotein A-I, it was conferred with aqueous solubility as judged by spectroscopic analysis. Nondenaturing polyacrylamide gel electrophoresis yielded evidence of a homogeneous population of ND particles ~9 nm in diameter. Gel filtration chromatography experiments revealed the association of nutlin-3a with ND is reversible. Biological activity of nutlin-3a ND was examined in three distinct glioblastoma cell lines, U87MG, SF763 and SF767. Incubation of U87MG cells with nutlin-3a ND induced concentration-dependent cell growth arrest and apoptosis. SF763 cells demonstrated modest cell growth arrest only at high concentrations of nutlin-3a ND and no apoptosis. SF767 cells were unaffected by nutlin-3a ND. Immunoblot analysis revealed nutlin-3a ND induced time-dependent stabilization of the master tumor suppressor, p53, and up regulation of the E3 ubiquitin ligase, murine double minute 2 in U87MG cells, but not the other glioma cell lines. The nanoscale size of the formulation particles, their facile assembly and nutlin-3a solubilization capability suggest ND represent a potentially useful vehicle for in vivo administration of this anti-tumor agent.

2.
J Biol Chem ; 276(41): 37853-60, 2001 Oct 12.
Article in English | MEDLINE | ID: mdl-11483594

ABSTRACT

Apolipoprotein E (apoE) is a 299 amino acid, anti-atherogenic protein that plays a key role in regulating plasma lipoprotein metabolism. It is composed of an N-terminal (NT) domain (residues 1-191) that is responsible for binding to members of the low density lipoprotein receptor family and a C-terminal (CT) domain (residues 216-299) that anchors the protein to lipoprotein particles by virtue of its high-affinity lipid binding characteristics. Isoform-specific differences in the NT domain that modulate the lipoprotein binding preference elicited by the CT domain suggest the existence and importance of domain interactions in this protein. Employing steady state fluorescence quenching and resonance energy transfer techniques, spatial proximity relationships between the N- and C-terminal domains were investigated in recombinant human apoE3. ApoE3 containing a single Trp at position 264 and an N-iodoacetyl-N'-(5-sulfo-1-napthyl) ethylenediamine (AEDANS) moiety covalently attached to the lone Cys residue at position 112 was used (AEDANS-apoE3/W@264). Fluorescence quenching studies revealed a solvent-exposed location for Trp-264. In the lipid-free state, fluorescence resonance energy transfer (FRET) was noted between Trp-264 and AEDANS, with a calculated distance of 27 A between the two fluorophores. Control experiments established that FRET observed in this system is intramolecular. FRET was abolished upon proteolysis in the linker region connecting the NT and CT domains. Lowering the solution pH to 4 induced an increase in the efficiency of intramolecular energy transfer, with the two domains reorienting about 5 A closer to one another. Interdomain FRET was retained in the presence of 0.6-1.0 m guanidine hydrochloride but was lost at higher concentrations, a manifestation of unfolding of the domains and increased distance between the donor-acceptor pair. Interaction of AEDANS-apoE3/W@264 with lipid induced a loss of FRET, attributed to spatial repositioning of the domains by >80 A. The data provide biophysical evidence that, in addition to reported conformational changes in the four-helix bundle configuration induced by lipid association, lipid binding of apoE is accompanied by reorientation of the tertiary disposition of the NT and CT domains.


Subject(s)
Apolipoproteins E/metabolism , Lipid Metabolism , Apolipoprotein E3 , Apolipoproteins E/chemistry , Apolipoproteins E/genetics , Energy Transfer , Guanidine/chemistry , Humans , Hydrogen-Ion Concentration , Hydrolysis , Mutagenesis, Site-Directed , Protein Conformation , Spectrometry, Fluorescence
3.
Eur J Biochem ; 268(13): 3728-35, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11432739

ABSTRACT

Apolipoprotein E (apoE) plays a critical role in plasma lipid homeostasis through its function as a ligand for the low-density lipoprotein (LDL) receptor family. Receptor recognition is mediated by residues 130-150 in the independently folded, 22-kDa N-terminal (NT) domain. This elongated globular four-helix bundle undergoes a conformational change upon interaction with an appropriate lipid surface. Unlike other apolipoproteins, apoE3 NT failed to fully protect human LDL from aggregation induced by treatment with phospholipase C. Likewise, in dimyristoylglycerophosphocholine (Myr2Gro-PCho) vesicle transformation assays, 100 microg apoE3 NT induced only 15% reduction in vesicle (250 microg) light scattering intensity after 30 min. ApoE3 NT interaction with modified lipoprotein particles or Myr2Gro-PCho vesicles was concentration-dependent whereas the vesicle transformation reaction was unaffected by buffer ionic strength. In studies with the anionic phospholipid dimyristoylglycerophosphoglycerol, apoE3 NT-mediated vesicle transformation rates were enhanced > 10-fold compared with Myr2Gro-PCho and activity decreased with increasing buffer ionic strength. Solution pH had a dramatic effect on the kinetics of apoE3 NT-mediated Myr2Gro-PCho vesicle transformation with increased rates observed as a function of decreasing pH. Fluorescence studies with a single tryptophan containing apoE3 NT mutant (L155W) revealed increased solvent exposure of the protein interior at pH values below 4.0. Similarly, fluorescent dye binding experiments with 8-anilino-1-naphthalene sulfonate revealed increased exposure of apoE3 NT hydrophobic interior as a function of decreasing pH. These studies indicate that apoE3 NT lipid binding activity is modulated by lipid surface properties and protein tertiary structure.


Subject(s)
Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Lipid Bilayers/metabolism , Apolipoprotein E3 , Apolipoproteins E/genetics , Binding Sites , Cloning, Molecular , Dimyristoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/metabolism , Escherichia coli , Humans , Hydrogen-Ion Concentration , Kinetics , Lipid Bilayers/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence
4.
Biochemistry ; 40(25): 7754-60, 2001 Jun 26.
Article in English | MEDLINE | ID: mdl-11412130

ABSTRACT

Locusta migratoria apolipophorin III (apoLp-III) is a helix bundle exchangeable apolipoprotein that reversibly binds to lipoprotein surfaces. Structural reorganization of its five amphipathic alpha-helices enables the transition from the lipid-free to lipid-bound state. ApoLp-III-induced transformation of dimyristoylphosphatidylcholine (DMPC) bilayer vesicles into smaller discoidal complexes is enhanced as a function of decreasing pH, with maximal transformation occurring at pH 3.5. Over the entire pH range studied, apoLp-III retains nearly all of its secondary structure content. Whereas no changes in fluorescence emission maximum of the two Trp residues in apoLp-III were observed in the pH range from 7.0 to 4.0, a further decrease in pH resulted in a strong red shift. Near-UV circular dichroism spectra of apoLp-III showed well-defined extrema (at 286 and 292 nm) between pH 7.0 and pH 4.0, which were attributed to Trp115. Below pH 4.0, these extrema collapsed, indicating a less rigid environment for Trp115. Similarly, the fluorescence intensity of 8-anilinonaphthalene-1-sulfonate in the presence of apoLp-III increased 4-fold below pH 4.0, indicating exposure of hydrophobic sites in the protein in this pH range. Taken together, the data suggest two conformational states of the protein. In the first state between pH 7.0 and pH 4.0, apoLp-III retains a nativelike helix bundle structure. The second state, found between pH 3.0 and pH 4.0, is reminiscent of a molten globule, wherein tertiary structure contacts are disrupted without a significant loss of secondary structure content. In both states DMPC vesicle transformation is enhanced by lowering the solution pH, reaching an optimum in the second state. The correlation between tertiary structure and lipid binding activity suggests that helix bundle organization is a determinant of apoLp-III lipid binding activity.


Subject(s)
Apolipoproteins/chemistry , Carrier Proteins/chemistry , Insect Proteins/chemistry , Anilino Naphthalenesulfonates/chemistry , Animals , Apolipoproteins/metabolism , Carrier Proteins/metabolism , Circular Dichroism , Dimyristoylphosphatidylcholine/chemistry , Dimyristoylphosphatidylcholine/metabolism , Fluorescent Dyes/chemistry , Grasshoppers , Hydrogen-Ion Concentration , Insect Proteins/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Protein Conformation , Solutions , Spectrometry, Fluorescence , Tryptophan/chemistry
5.
Biochim Biophys Acta ; 1531(3): 251-9, 2001 Apr 30.
Article in English | MEDLINE | ID: mdl-11325616

ABSTRACT

To investigate the sequence requirements for apolipoprotein (apo) AI functions, comparisons of human and chicken apoAI were performed. In lipid binding assays, chicken apoAI was capable of transforming phospholipid vesicles into discoidal bilayer structures, similar in both size and apolipoprotein content to those produced with human apoAI under the same conditions. Human and chicken apoAI were indistinguishable in their relative abilities to prevent phospholipase C-induced aggregation of human low density lipoprotein. This activity, which is dependent upon formation of a stable interaction with the modified lipoprotein, represents a sensitive measure of apolipoprotein association with spherical lipoprotein particles. The ability of chicken versus human apoAI to mobilize the regulatory pool of cholesterol available for esterification by acyl-CoA:cholesterol acyltransferase by human fibroblasts was also assessed. Lipid-free chicken and human apoAI were equivalent in their ability to deplete cholesterol from this pool, as were intact chicken high density lipoprotein (HDL) and human HDL(3). Based on the overall sequence identity of chicken and human apoAI (48%), and comparison of regions thought to be responsible for key apoAI functions, these data indicate that amphipathic alpha-helical structure, rather than specific amino acid sequence, is the major determinant of apoAI lipid binding and ability to mobilize the regulatory pool of cellular cholesterol.


Subject(s)
Apolipoprotein A-I/pharmacology , Protein Conformation , Amino Acid Sequence , Animals , Apolipoprotein A-I/chemistry , Cells, Cultured , Chickens , Cholesterol/analysis , Cholesterol/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lipid Bilayers/chemistry , Lipoproteins, HDL/pharmacology , Lipoproteins, LDL/metabolism , Molecular Sequence Data , Phospholipids/chemistry , Sequence Alignment , Type C Phospholipases
6.
Biochemistry ; 40(10): 3150-7, 2001 Mar 13.
Article in English | MEDLINE | ID: mdl-11258930

ABSTRACT

Apolipophorin III (apoLp-III) from the greater wax moth Galleria mellonella is an exchangeable insect apolipoprotein that consists of five amphipathic alpha-helices, sharing high sequence identity with apoLp-III from the sphinx moth Manduca sexta whose structure is available. To define the minimal requirement for apoLp-III structural stability and function, a C-terminal truncated apoLp-III encompassing residues 1-91 of this 163 amino acid protein was designed. Far-UV circular dichroism spectroscopy revealed apoLp-III(1-91) has 50% alpha-helix secondary structure content in buffer (wild-type apoLp-III 86%), increasing to essentially 100% upon interactions with dimyristoylphosphatidylcholine (DMPC). Guanidine hydrochloride denaturation studies revealed similar stability properties for wild-type apoLp-III and apoLp-III(1-91). Resistance to denaturation for both proteins increased substantially upon association with phospholipid. In the absence of lipid, wild-type apoLp-III was monomeric whereas apoLp-III(1-91) partly formed dimers and trimers. Discoidal apoLp-III(1-91)-DMPC complexes were smaller in diameter (13.5 nm) compared to wild-type apoLp-III (17.7 nm), and more molecules of apoLp-III(1-91) associated with the complexes. Lipid interaction revealed that apoLp-III(1-91) binds to modified spherical lipoprotein surfaces and efficiently transforms phospholipid vesicles into discoidal complexes. Thus, the first three helices of G. mellonella apoLp-III contain the basic features required for maintenance of the structural integrity of the entire protein.


Subject(s)
Apolipoproteins/chemistry , Apolipoproteins/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Lipid Metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Animals , Apolipoproteins/genetics , Apolipoproteins/ultrastructure , Chemical Phenomena , Chemistry, Physical , Conserved Sequence , Cross-Linking Reagents/chemistry , Insect Proteins/genetics , Insect Proteins/ultrastructure , Lipids/chemistry , Lipoproteins, LDL/metabolism , Macromolecular Substances , Moths , Peptide Fragments/genetics , Peptide Fragments/ultrastructure , Phospholipids/chemistry , Phospholipids/metabolism , Protein Binding , Protein Denaturation , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemical synthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure , Sequence Deletion , Surface Properties , Type C Phospholipases/chemistry
8.
J Biol Chem ; 275(49): 38329-36, 2000 Dec 08.
Article in English | MEDLINE | ID: mdl-10986285

ABSTRACT

Apolipoprotein E (apoE) plays a critical role in lipoprotein particle clearance from blood plasma through its interaction with the low density lipoprotein (LDL) receptor and other related receptors. Here, we studied a 58-residue peptide encompassing the receptor binding region of apoE. ApoE3-(126-183) was generated by cyanogen bromide cleavage of recombinant apoE3-(1-183), purified by reversed-phase high pressure liquid chromatography, and characterized by mass spectrometry. Far UV CD spectroscopy of the peptide showed that it is unstructured in aqueous solution. The addition of trifluoroethanol or dodecylphosphocholine induces the peptide to adopt an alpha-helical conformation. ApoE3-(126-183) efficiently transforms dimyristoylphosphatidylglycerol (DMPG) vesicles into peptide-lipid complexes. Analysis of apoE3-(126-183). DMPG complexes by electron microscopy revealed disc-shaped particles with an average diameter of 13 +/- 3 nm. Flotation equilibrium analysis yielded a particle molecular mass of 252 kDa. Far UV CD analysis of apoE3-(126-183).DMPG discs provided evidence that the peptide adopts a helical conformation. Competition binding experiments with (125)I-labeled low density lipoprotein (LDL) were conducted to assess the ability of apoE3-(126-183).DMPG complexes to bind to the LDL receptor. Both N-terminal apoE and the peptide, when complexed with DMPG, competed with (125)I-LDL for binding sites on the surface of cultured human skin fibroblasts. Under the conditions employed, apoE3-(126-183).DMPG complexes were similar to apoE3-(1-183).DMPG discs in their ability to bind to the receptor, demonstrating that the peptide represents a good model to study the interaction between apoE and the LDL receptor. Preliminary NMR results indicated that a high resolution structure of the apoE3-(126-183) peptide is obtainable.


Subject(s)
Apolipoproteins E/chemistry , Apolipoproteins E/pharmacology , Peptide Fragments/chemistry , Receptors, LDL/metabolism , Apolipoprotein E3 , Binding, Competitive , Cells, Cultured , Fibroblasts/metabolism , Humans , Lipoproteins, LDL/metabolism , Liposomes/chemistry , Peptide Fragments/pharmacology , Phosphatidylglycerols/chemistry , Protein Structure, Secondary , Receptors, LDL/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Skin/metabolism
9.
J Biol Chem ; 275(43): 33601-6, 2000 Oct 27.
Article in English | MEDLINE | ID: mdl-10906325

ABSTRACT

Apolipoprotein E (apoE) is a 34-kDa exchangeable apolipoprotein that regulates metabolism of plasma lipoproteins by functioning as a ligand for members of the LDL receptor family. The receptor-binding region localizes to the vicinity of residues 130-150 within its independently folded 22-kDa N-terminal domain. In the absence of lipid, this domain exists as a receptor-inactive, globular four-helix bundle. Receptor recognition properties of this domain are manifest upon lipid association, which is accompanied by a conformational change in the protein. Fluorescence resonance energy transfer has been used to monitor helix repositioning, which accompanies lipid association of the apoE N-terminal domain. Site-directed mutagenesis was used to replace naturally occurring Trp residues with phenylalanine, creating a Trp-null apoE3 N-terminal domain (residues 1-183). Subsequently, tyrosine residues in helix 2, helix 3, or helix 4 were converted to Trp, generating single Trp mutant proteins. The lone cysteine at position 112 was covalently modified with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, which serves as an energy acceptor from excited tryptophan residues. Fluorescence resonance energy transfer analysis of apoE N-terminal domain variants in phospholipid disc complexes suggests that the helix bundle opens to adopt a partially extended conformation. A model is presented that depicts a tandem arrangement of the receptor-binding region of the protein in the disc complex, corresponding to its low density lipoprotein receptor-active conformation.


Subject(s)
Apolipoproteins E/chemistry , Receptors, LDL/chemistry , Apolipoproteins E/metabolism , Binding Sites , Humans , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Protein Structure, Secondary , Receptors, LDL/metabolism , Spectrometry, Fluorescence
10.
Biochemistry ; 39(22): 6594-601, 2000 Jun 06.
Article in English | MEDLINE | ID: mdl-10828977

ABSTRACT

Manduca sexta apolipophorin III (apoLp-III), an 18-kDa, monomeric, insect hemolymph apolipoprotein, is comprised of five amphipathic alpha-helices arranged as a globular bundle in the lipid-free state. Upon lipid binding, it is postulated that the bundle opens, exposing a continuous hydrophobic surface which becomes available for lipid interaction. To investigate lipid binding-induced helical rearrangements, we exploited the unique fluorescence characteristics of N-(1-pyrene)maleimide. Pyrene is a spatially sensitive extrinsic fluorescent probe, which forms excited-state dimers (excimers) upon close encounter with another pyrene molecule. Cysteine residues were introduced into apoLp-III (which otherwise lacks cysteine) at Asn 40 (helix 2) and/or Leu 90 (helix 3), creating two single-cysteine mutants (N40C-apoLp-III and L90C-apoLp-III) and N40C/L90C-apoLp-III, a double-cysteine mutant, which were labeled with pyrene maleimide. Pyrene-labeled N40C/L90C-apoLp-III, but not the pyrene-labeled single-cysteine mutants, exhibited strong excimer fluorescence in the lipid-free, monomeric state. Guanidine hydrochloride titration and temperature studies revealed a loss in excimer fluorescence, accompanied by a loss in the molar ellipticity of the protein. When apoLp-III interacts with phospholipid vesicles to form disklike complexes, a significant loss in excimer fluorescence was noted, indicating that the helices bearing the pyrene moieties diverge from each other. Pyrene excimer fluorescence was further employed to examine the relative orientation of lipid-bound apoLp-III molecules. Pyrene-labeled N40C- or L90C-apoLp-III displayed no excimer fluorescence in the disk complexes, while complexes prepared with an equal mixture of both single-labeled mutants did emit excimer fluorescence, indicating apoLp-III adopts a preferred nonrandom orientation around the perimeter of the bilayer disk. These studies establish pyrene excimer fluorescence as a useful spectroscopic tool to address intra- and intermolecular interactions of exchangeable apolipoproteins upon binding to lipid.


Subject(s)
Apolipoproteins/chemistry , Fluorescent Dyes , Lipids/chemistry , Protein Structure, Secondary , Animals , Circular Dichroism , Dimerization , Guanidine/pharmacology , Insect Proteins/chemistry , Liposomes/chemistry , Maleimides/chemistry , Manduca , Mutation , Recombinant Proteins/chemistry , Spectrometry, Fluorescence , Temperature , Trifluoroethanol/pharmacology
11.
Biochemistry ; 39(23): 6874-80, 2000 Jun 13.
Article in English | MEDLINE | ID: mdl-10841768

ABSTRACT

The effect of lipid association on the local environment of the two tryptophan residues of Locusta migratoria apolipophorin III (apoLp-III) has been studied. In the lipid-free state, Trp115 in helix 4 is buried in the hydrophobic interior of the helix bundle, while Trp130 is located in a loop connecting helices 4 and 5. Fluorescence spectroscopy of single Trp mutants revealed an emission maximum (lambda(max)) of 321 nm for apoLp-III-W@115 (excitation 280 nm) which red-shifted to 327 nm upon binding to dimyristoylphosphatidylcholine (DMPC). ApoLp-III-W@130 displayed a lambda(max) of 338 nm while interaction with DMPC resulted in a blue shift to 331 nm. Quenching studies with KI and acrylamide revealed decreased accessibility to Trp115 compared to Trp130, while lipid binding induced a decrease in quenching of Trp130. Aromatic circular dichroism (CD) spectra showed that Trp vibronic transitions at 278, 286, and 294 nm for lipid-free apoLp-III were caused by Trp115. Upon lipid association, aromatic extrema are reversed in sign, becoming entirely negative with both Trp residues contributing to the vibronic transitions, implying restriction in side-chain mobility of these residues. Thus, lambda(max), quencher accessibility, and aromatic CD analysis indicate that Trp115 is much less solvent-exposed than Trp130. Differences in fluorescence properties of these residues are minimized in the lipid-bound state, a result of relocation of Trp115 and Trp130 into the lipid milieu. Thus, in addition to the hydrophobic faces of apoLp-III amphipathic alpha-helices, the loop region containing Trp130 comes in close contact with DMPC.


Subject(s)
Apolipoproteins/chemistry , Lipids/chemistry , Tryptophan/chemistry , Acrylamide/pharmacology , Animals , Apolipoproteins/genetics , Circular Dichroism , Dimyristoylphosphatidylcholine , Grasshoppers , Guanidine/pharmacology , Insect Proteins/chemistry , Mutation , Nephelometry and Turbidimetry , Protein Binding , Protein Structure, Secondary , Spectrometry, Fluorescence , Trypsin
12.
Annu Rev Entomol ; 45: 233-60, 2000.
Article in English | MEDLINE | ID: mdl-10761577

ABSTRACT

Recent advances on the biochemistry of flight-related lipid mobilization, transport, and metabolism are reviewed. The synthesis and release of adipokinetic hormones and their function in activation of fat body triacylglycerol lipase to produce diacylglycerol is discussed. The dynamics of reversible lipoprotein conversions and the structural properties and role of the exchangeable apolipoprotein, apolipophorin III, in this process is presented. The nature and structure of hemolymph lipid transfer particle and the potential role of a recently discovered lipoprotein receptor of the low-density lipoprotein receptor family, in lipophorin metabolism and lipid transport is reviewed.


Subject(s)
Energy Metabolism/physiology , Insecta/metabolism , Lipid Metabolism , Animals , Apolipoproteins/metabolism , Biological Transport , Carrier Proteins/genetics , Carrier Proteins/metabolism , Insect Hormones/metabolism , Insecta/physiology , Lipoproteins/genetics , Lipoproteins/metabolism , Oligopeptides/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives
13.
J Lipid Res ; 41(3): 416-23, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10706589

ABSTRACT

Apolipophorin III (apoLp-III) from Locusta migratoria is an exchangeable apolipoprotein that binds reversibly to lipoprotein surfaces. The native protein is glycosylated at Asn-18 and Asn-85. Variable attachment of five distinct oligosaccharide moieties at the two glycosylation sites results in molecular weight heterogeneity, as seen by mass spectrometry. The main mass peak of 20,488 Da decreases to 17,583 Da after removal of carbohydrate, indicating that apoLp-III carbohydrate mass is approximately 14% by weight. Deglycosylated apoLp-III induced clearance of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol vesicles at a faster rate than glycosylated apoLp-III. However, in lipoprotein binding assays, in which apoLp-III interacts with surface-localized diacylglycerol, only minor differences in binding were observed. The fluorescence properties of 1-anilinonaphthalene-8-sulfonate were unaffected by the glycosylation state of apoLp-III, indicating that no changes in the relative amount of exposed hydrophobic surface occurred as a result of carbohydrate removal. We propose that glycosyl moieties affect the ability of apoLp-III to transform phospholipid bilayer vesicles into disc-like complexes by steric hindrance. This is due to the requirement that apoLp-III penetrate the bilayer substrate prior to conformational opening of the helix bundle. On the other hand, the glycosyl moieties do not affect lipoprotein binding interactions as it does not involve deep protein penetration into the lipid milieu. Rather, lipoprotein binding is based on oriented protein contact with the lipid surface followed by opening of the helix bundle, which allows formation of a stable interaction with surface exposed hydrophobic sites.


Subject(s)
Apolipoproteins/metabolism , Lipoproteins/metabolism , Phospholipids/metabolism , Animals , Apolipoproteins/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Glycosylation , Grasshoppers , Mass Spectrometry , Molecular Sequence Data , Molecular Structure , Protein Binding , Spectrometry, Fluorescence
14.
Eur J Biochem ; 267(3): 728-36, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10651809

ABSTRACT

Apolipophorin III (apoLp-III) from the silkmoth, Bombyx mori, has been over-expressed in Escherichia coli, purified and characterized. Far-UV CD spectroscopic analysis revealed 65% alpha-helix secondary structure. Near-UV CD spectra obtained in buffer or complexed with dimyristoylglycerophosphocholine (DMPC), provided evidence that apoLp-III alpha-helices reorient upon interaction with lipid, indicative of a protein conformational change. In guanidine hydrochloride (GdnHCl) denaturation studies, a transition midpoint of 0.33 M was observed, corresponding to a DeltaGDH2O = 2.46 kcal. mol-1. Fluorescence studies of the sole tryptophan residue (Trp40) in apoLp-III revealed an emission lambdamax = 327 nm. Compared to free tryptophan, Stern-Volmer constants (KSV) for acrylamide and KI quenching of Trp40 fluorescence were decreased by 20-fold and sevenfold, respectively. In studies of apoLp-III-DMPC disc complexes, far-UV CD spectroscopy revealed an increase in alpha-helix content to approximately 85% and a ninefold increase in the GdnHCl-induced denaturation transition midpoint to 3 M. In studies of lipid interaction, apoLp-III was shown to disrupt both negatively charged and zwitterionic phospholipid bilayer vesicles, transforming them into discoidal complexes. Characterization of apoLp-III-DMPC discs, using 5-doxyl or 12-doxyl stearic acid as lipid-based quenching agents, revealed that Trp40 localizes near the phospholipid polar head groups. KSV values for acrylamide and KI quenching of intrinsic fluorescence of apoLp-III-DMPC discs indicate that Trp40 is embedded in the lipid milieu, with little or no accessibility to the aqueous quenchers. Given the large amount of alpha-helix in apoLp-III, the data presented support a model in which amphipathic alpha-helical segments are stabilized by helix-helix interactions and lipid association induces a protein conformational change which results in substitution of helix-helix interactions for helix-lipid contacts.


Subject(s)
Apolipoproteins/chemistry , Bombyx/chemistry , Insect Proteins/chemistry , Animals , Apolipoproteins/genetics , Apolipoproteins/metabolism , Biophysical Phenomena , Biophysics , Bombyx/genetics , Circular Dichroism , Drug Stability , Escherichia coli/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Lipoproteins/metabolism , Liposomes , Protein Binding , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence
16.
Comp Biochem Physiol B Biochem Mol Biol ; 122(4): 447-51, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10392457

ABSTRACT

The surface of Manduca sexta low density lipophorin (LDLp) particles was employed as a template to examine the relative lipid binding affinity of the 22 kDa receptor binding domain (residues 1-183) of human apolipoprotein E3 (apo E3). Isolated LDLp was incubated with exogenous apolipoprotein and, following re-isolation by density gradient ultracentrifugation, particle apolipoprotein content was determined. Incubation of recombinant human apo E3(1-183) with LDLp resulted in a saturable displacement of apolipophorin III (apo Lp-III) from the particle surface, creating a hybrid apo E3(1-183)-LDLp. Although subsequent incubation with excess exogenous apo Lp-III failed to reverse the process, human apolipoprotein A-I (apo A-I) effectively displaced apo E3(1-183) from the particle surface. We conclude that human apo E N-terminal domain possesses a higher intrinsic lipid binding affinity than apo Lp-III but has a lower affinity than human apo A-I. The apo E3(1-183)-LDLp hybrid was competent to bind to the low density lipoprotein receptor on cultured fibroblasts. The system described is useful for characterizing the relative lipid binding affinities of wild type and mutant exchangeable apolipoproteins and evaluation of their biological properties when associated with the surface of a spherical lipoprotein.


Subject(s)
Apolipoproteins E/chemistry , Apolipoproteins/physiology , Lipoproteins, LDL/physiology , Animals , Apolipoprotein A-I/physiology , Binding, Competitive , Humans , Insect Proteins/chemistry , Manduca/chemistry , Protein Binding , Recombinant Fusion Proteins
17.
J Biol Chem ; 274(31): 21804-10, 1999 Jul 30.
Article in English | MEDLINE | ID: mdl-10419496

ABSTRACT

Apolipophorin III (apoLp-III) from Locusta migratoria is an exchangeable apolipoprotein that binds reversibly to lipid surfaces. In the lipid-free state this 164-residue protein exists as a bundle of five elongated amphipathic alpha-helices. Upon lipid binding, apoLp-III undergoes a significant conformational change, resulting in exposure of its hydrophobic interior to the lipid environment. On the basis of x-ray crystallographic data (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesenberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, H. M. (1991) Biochemistry 30, 603-608), it was proposed that hydrophobic residues, present in loops that connect helices 1 and 2 (Leu-32 and Leu-34) and helices 3 and 4 (Leu-95), may function in initiation of lipid binding. To examine this hypothesis, mutant apoLp-IIIs were designed wherein the three Leu residues were replaced by Arg, individually or together. Circular dichroism spectroscopy and temperature and guanidine hydrochloride denaturation studies showed that the mutations did not cause major changes in secondary structure content or stability. In lipid binding assays, addition of apoLp-III to phospholipid vesicles caused a rapid clearance of vesicle turbidity due to transformation to discoidal complexes. L34R and L32R/L34R/L95R apoLp-IIIs displayed a much stronger interaction with lipid vesicles than wild-type apoLp-III. Furthermore, it was demonstrated that the mutant apoLp-IIIs retained their ability to bind to lipoprotein particles. However, in lipoprotein competition binding assays, the mutants displayed an impaired ability to initiate a binding interaction when compared with wild-type apoLp-III. The data indicate that the loops connecting helices 1 and 2 and helices 3 and 4 are critical regions in the protein, contributing to recognition of hydrophobic defects on lipoprotein surfaces by apoLp-III.


Subject(s)
Apolipoproteins/chemistry , Leucine , Lipoproteins/chemistry , Liposomes/chemistry , Amino Acid Sequence , Animals , Carrier Proteins/chemistry , Circular Dichroism , Dimyristoylphosphatidylcholine/chemistry , Grasshoppers , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Nephelometry and Turbidimetry , Phosphatidylglycerols/chemistry , Protein Structure, Secondary , Recombinant Proteins/chemistry
18.
Proc Natl Acad Sci U S A ; 96(8): 4366-71, 1999 Apr 13.
Article in English | MEDLINE | ID: mdl-10200268

ABSTRACT

Apolipophorin III (apoLp-III) from the sphinx moth, Manduca sexta, is a helix bundle protein that interacts reversibly with lipoproteins. Its five elongated amphipathic alpha-helices are organized in an antiparallel fashion, with helices 3 and 4 connected by a short 6-residue (PDVEKE) linker helix, termed helix 3'. Upon interaction with lipoproteins, apoLp-III opens to expose a continuous hydrophobic interior. It was postulated that helix bundle opening is preceded by an initiation step wherein helix 3' serves to recognize available lipoprotein surface binding sites. To test this hypothesis, helix 3' was replaced by residues that have a propensity to form a type I beta-turn, NPNG. This mutant apoLp-III was defective in lipoprotein binding assays. To define a more precise mode of interaction, the relevance of the presence of the hydrophobic Val-97 flanked by Asp-96 and Glu-98 was investigated by site-directed mutagenesis. V97N and D96N/V97N/E98Q apoLp-III were unable to compete with wild-type apoLp-III to initiate an interaction with lipoproteins, whereas D96N/E98Q apoLp-III was as competent as wild-type apoLp-III. The results suggest that Val-97 is critical, whereas Asp-96 and Glu-98 are irrelevant for initiating binding to lipoproteins. A model of binding is presented wherein apoLp-III is oriented with the helix 3' end of the molecule juxtaposed to the lipoprotein surface. Recognition of lipoprotein surface hydrophobic defects by Val-97 triggers opening of the helix bundle and facilitates formation of a stable binding interaction.


Subject(s)
Apolipoproteins/chemistry , Apolipoproteins/metabolism , Lipoproteins, LDL/metabolism , Protein Structure, Secondary , Amino Acid Substitution , Animals , Apolipoproteins/genetics , Binding, Competitive , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cloning, Molecular , Escherichia coli , Kinetics , Manduca , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Type C Phospholipases/metabolism
19.
Biochemistry ; 38(14): 4327-34, 1999 Apr 06.
Article in English | MEDLINE | ID: mdl-10194351

ABSTRACT

Apolipoprotein A-I (apoA-I), the major protein component of plasma high-density lipoprotein (HDL), exists in alternate lipid-free and lipid-bound states. Among various species, chicken apoA-I possesses unique structural properties: it is a monomer in the lipid-free state and it is virtually the sole protein component of HDL. Near-UV circular dichroism (CD) spectroscopic studies provide evidence that chicken apoA-I undergoes a major conformational change upon binding to lipid, while far-UV CD data indicate its overall alpha-helix content is maintained during this transition. The fluorescence emission wavelength maximum (excitation 295 nm) of the tryptophans in apoA-I (W74 and W107) displayed a marked blue shift in both the lipid-free (331 nm) and HDL-bound (329 nm) states, compared to free tryptophan in solution. The effect of aqueous quenchers on tryptophan fluorescence was determined in lipid-free, dimyristoylphosphatidylcholine (DMPC)- and HDL-bound states. The most effective quencher in the lipid-free and HDL-bound states was acrylamide, giving rise to Ksv values of 1.6 +/- 0.1 and 1.2 +/- 0.1 M-1, respectively. Together, these data suggest that a hydrophobic environment around the two tryptophan residues (W74 and W107) is maintained in alternate conformations of the protein. To further probe the molecular organization of lipid-free apoA-I, its effect on the fluorescence properties of 8-anilino-1-naphthalenesulfonic acid (ANS) was determined. Human and chicken apoA-I induced a similar increase in ANS fluorescence quantum yield, in keeping with the hypothesis that these proteins adopt a similar global fold in the absence of lipid. When considered with near- and far-UV CD experiments, the data support a model in which lipid-free chicken apoA-I is organized as an amphipathic alpha-helix bundle. In other studies, lipid-soluble quenchers, 5-, 7-, 10-, and 12-DOXYL stearic acid (DSA), were employed to investigate the depth of penetration of apoA-I into the surface monolayer of spherical HDL particles. 5-DSA was the most effective quencher, suggesting that apoA-I tryptophan residues localize near the surface monolayer, providing a structural rationale for the reversibility of apoA-I-lipoprotein particle interactions.


Subject(s)
Apolipoprotein A-I/chemistry , Lipids/chemistry , Acrylamide/chemistry , Anilino Naphthalenesulfonates/chemistry , Animals , Cesium/chemistry , Chickens , Chlorides/chemistry , Circular Dichroism , Fatty Acids/chemistry , Fluorescence Polarization , Fluorescent Dyes/chemistry , Humans , Potassium Iodide/chemistry , Protein Structure, Secondary , Spectrometry, Fluorescence , Spin Labels , Trifluoroethanol/chemistry , Tryptophan/chemistry
20.
J Lipid Res ; 40(1): 93-9, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9869654

ABSTRACT

The N-terminal domain of human apolipoprotein E3 (apoE3) adopts an elongated, globular four helix bundle conformation in the lipid-free state. Upon lipid binding, the protein is thought to undergo a significant conformational change that is essential for manifestation of its low density lipoprotein receptor recognition properties. We have used fluorescence resonance energy transfer (FRET) to characterize helix repositioning which accompanies lipid interaction of this protein. ApoE3(1-183) possesses a single cysteine at position 112 and four tryptophan residues (positions 20, 26, 34, and 39). Modification of Cys112 with the chromophore, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)etheylenediamine (AEDANS) was specific and did not alter the secondary structure content of the protein. The efficiency of energy transfer from donor Trp residues to the AEDANS moiety was 49% in buffer, consistent with close proximity of the chromophores. Guanidine HCl titration experiments induced characteristic changes in the efficiency of energy transfer, indicating that FRET data faithfully reports on the conformational status of the protein. Interaction of AEDANS-apoE3(1-183) with dimyristoylphosphatidylcholine to form disk particles, or with detergent micelles, resulted in large decreases in the efficiency of energy transfer. Distance calculations based on the FRET measurements revealed that lipid binding increases the average distance between the four Trp donors and the AEDANS acceptor from 23 A to 44 A. The results obtained demonstrate the utility of FRET to investigate conformational adaptations of exchangeable apolipoproteins and are consistent with the hypothesis that, upon lipid binding, apoE3(1-183) undergoes conformational opening, repositioning helix 1 and 3 to adopt a receptor-active conformation.


Subject(s)
Apolipoproteins E/chemistry , Apolipoproteins E/metabolism , Lipid Metabolism , Apolipoprotein E3 , Dimyristoylphosphatidylcholine , Energy Transfer , Fluorescent Dyes , Guanidine , Humans , In Vitro Techniques , Micelles , Models, Molecular , Naphthalenesulfonates , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Trifluoroethanol
SELECTION OF CITATIONS
SEARCH DETAIL
...