Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 25(1): e14232, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38088260

ABSTRACT

PURPOSE: This study aims to assess the accuracy of a modified electron beam calibration based on the IAEA TRS-398 and AAPM-TG-51 in multicenter radiotherapy. METHODS: This study was performed using the Elekta and Varian Linear Accelerator electron beams with energies of 4-22 MeV under reference conditions using cylindrical (PTW 30013, IBA FC65-G, and IBA FC65-P) and parallel-plate (PTW 34045, PTW 34001, and IBA PPC-40) chambers. The modified calibration used a cylindrical chamber and an updated k ' Q $k{^{\prime}}_Q$ based on Monte Carlo calculations, whereas TRS-398 and TG-51 used cylindrical and parallel-plate chambers for reference dosimetry. The dose ratio of the modified calibration procedure, TRS-398 and TG-51 were obtained by comparing the dose at the maximum depth of the modified calibration to TRS-398 and TG-51. RESULTS: The study found that all cylindrical chambers' beam quality conversion factors determined with the modified calibration ( k ' Q ) $( {{{k^{\prime}}}_Q} )$ to the TRS-398 and TG-51 vary from 0.994 to 1.003 and 1.000 to 1.010, respectively. The dose ratio of modified/TRS-398cyl and modified/TRS-398parallel-plate, the variation ranges were 0.980-1.014 and 0.981-1.019, while for the counterpart modified/TG-51cyl was found varying between 0.991 and 1.017 and the ratio of modified/TG-51parallel-plate varied in the range of 0.981-1.019. CONCLUSION: This multi-institutional study analyzed a modified calibration procedure utilizing new data for electron beam calibrations at multiple institutions and evaluated existing calibration protocols. Based on observed variations, the current calibration protocols should be updated with detailed metrics on the stability of linac components.


Subject(s)
Electrons , Phenylpropionates , Radiotherapy, High-Energy , Humans , Radiotherapy, High-Energy/methods , Calibration , Water , Radiometry/methods , Photons
2.
J Med Phys ; 48(4): 402-408, 2023.
Article in English | MEDLINE | ID: mdl-38223799

ABSTRACT

This article aims to present the development, construction, and evaluation of an alternative computed tomography dose index (CTDI) phantom. Epoxy resin was mixed with an iodine-based contrast agent to produce radiological characteristics resembling polymethyl methacrylate (PMMA) as a standard CTDI phantom. As a preliminary study, testing was carried out using computed tomography images (80 and 120 kVp) on 12 variations of epoxy-iodine resin mixtures to obtain relative electron density (ρe) values and effective atomic numbers (Zeff) of the samples. The alternative CTDI phantoms were then constructed with a resin-iodine mixture using iodine concentrations that yield on closest ρe and Zeff values to those of PMMA. The evaluation was carried out by comparing dose measurement results at various energies between the alternative phantom and the International Electrotechnical Commission-standard CTDI phantom. At a concentration of 0.46%, the epoxy resin has ρe and Zeff with a deviation against PMMA of 0.12% and 1.58%, respectively, so that composition was chosen for the alternative CTDI phantom construction. The average dose discrepancy values were 5% and 1%, respectively, for the head and body phantoms in the tested tube voltages of 80 kVp, 100 kVp, 120 kVp, and 135 kVp. The Student's t-test result between the alternative and the standard phantoms also showed P < 0.05, indicating the comparability of the alternative CTDI phantom with the standard CTDI phantom.

SELECTION OF CITATIONS
SEARCH DETAIL
...