Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Expert Opin Drug Metab Toxicol ; 19(9): 635-652, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37728555

ABSTRACT

INTRODUCTION: Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED: This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION: There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.

2.
Front Immunol ; 14: 1125948, 2023.
Article in English | MEDLINE | ID: mdl-37063917

ABSTRACT

Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.


Subject(s)
Hearing Loss , Ototoxicity , Rats , Animals , Male , Cisplatin/adverse effects , Chemokine CXCL1/genetics , Ototoxicity/drug therapy , Ototoxicity/etiology , Rats, Wistar , NADPH Oxidases/metabolism , Hearing Loss/chemically induced , Hearing Loss/metabolism
3.
Int J Audiol ; 62(2): 151-158, 2023 02.
Article in English | MEDLINE | ID: mdl-35015962

ABSTRACT

OBJECTIVE: To elucidate D-methionine's (D-met) dose and time rescue parameters from steady-state or impulse noise-induced permanent threshold shift (PTS) and determine D-met rescue's influence on serum and cochlear antioxidant levels. DESIGN: Five D-met doses at 0, 50, 100, or 200 mg/kg/dose administered starting at 1, 24, or 36 hours post steady-state or impulse noise exposure. Auditory brainstem responses at baseline and 21 days post-noise measured PTS. Serum (superoxide dismutase [SOD], catalase [CAT],, glutathione reductaseand glutathione peroxidase [GPx]) and cochlear (Glutathione [GSH] and glutathione disulphide [GSSG]) antioxidant levels measured physiological impact. STUDY SAMPLE: Chinchillas (10/study group; 6-8/confirmatory groups). RESULTS: D-met significantly reduced PTS for impulse noise (100 mg [2, 6, 14 and 20 kHz]; 200 mg [2, 14 and 20 kHz]) and steady-state noise (all dosing groups, time parameters and tested frequencies). PTS reduction did not significantly vary by rescue time. D-met significantly increased serum SOD (100 and 200 mg for 24 hour rescue) and GPx (50 mg/kg at 24 hour rescue) at 21 days post-noise. Cochlear GSH and GSSG levels were unaffected relative to control. CONCLUSION: D-met rescues from steady-state and impulse noise-induced PTS even when administered up to 36 hours post-noise and dose-dependently influences serum antioxidant levels even 21 days post-noise. D-met's broad and effective dose/time window renders it a promising antioxidant rescue agent.


Subject(s)
Hearing Loss, Noise-Induced , Methionine , Humans , Antioxidants/pharmacology , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/prevention & control , Glutathione Disulfide/pharmacology , Racemethionine/pharmacology , Superoxide Dismutase/pharmacology , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem/physiology
5.
Antioxid Redox Signal ; 36(16-18): 1158-1170, 2022 06.
Article in English | MEDLINE | ID: mdl-34465184

ABSTRACT

Significance: Transient receptor potential (TRP) channels are cation-gated channels that serve as detectors of various sensory modalities, such as pain, heat, cold, and taste. These channels are expressed in the inner ear, suggesting that they could also contribute to the perception of sound. This review provides more details on the different types of TRP channels that have been identified in the cochlea to date, focusing on their cochlear distribution, regulation, and potential contributions to auditory functions. Recent Advances: To date, the effect of TRP channels on normal cochlear physiology in mammals is still unclear. These channels contribute, to a limited extent, to normal cochlear physiology such as the hair cell mechanoelectrical transduction channel and strial functions. More detailed information on a number of these channels in the cochlea awaits future studies. Several laboratories focusing on TRPV1 channels have shown that they are responsive to cochlear stressors, such as ototoxic drugs and noise, and regulate cytoprotective and/or cell death pathways. TRPV1 expression in the cochlea is under control of oxidative stress (produced primarily by NOX3 NADPH oxidase) as well as STAT1 and STAT3 transcription factors, which differentially modulate inflammatory and apoptotic signals in the cochlea. Inhibition of oxidative stress or inflammation reduces the expression of TRPV1 channels and protects against cochlear damage and hearing loss. Critical Issues: TRPV1 channels are activated by both capsaicin and cisplatin, which produce differential effects on the inner ear. How these differential actions are produced is yet to be determined. It is clear that TRPV1 is an essential component of cisplatin ototoxicity as knockdown of these channels protects against hearing loss. In contrast, activation of TRPV1 by capsaicin protected against subsequent hearing loss induced by cisplatin. The cellular targets that are influenced by these two drugs to account for their differential profiles need to be fully elucidated. Furthermore, the potential involvement of different TRP channels present in the cochlea in regulating cisplatin ototoxicity needs to be determined. Future Directions: TRPV1 has been shown to mediate the entry of aminoglycosides into the hair cells. Thus, novel otoprotective strategies could involve designing drugs to inhibit entry of aminoglycosides and possibly other ototoxins into cochlear hair cells. TRP channels, including TRPV1, are expressed on circulating and resident immune cells. These receptors modulate immune cell functions. However, whether they are activated by cochlear stressors to initiate cochlear inflammation and ototoxicity needs to be determined. A better understanding of the function and regulation of these TRP channels in the cochlea could enable development of novel treatments for treating hearing loss. Antioxid. Redox Signal. 36, 1158-1170.


Subject(s)
Hearing Loss , Ototoxicity , Transient Receptor Potential Channels , Aminoglycosides/adverse effects , Animals , Capsaicin/adverse effects , Cisplatin/adverse effects , Hearing Loss/metabolism , Inflammation/metabolism , Mammals/metabolism
6.
Int J Audiol ; 61(9): 769-777, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34369249

ABSTRACT

OBJECTIVE: Determine if D-methionine (D-met) rescue prevents temporary threshold shift (TTS) from steady-state or impulse noise and determine D-met's impact on serum and cochlear antioxidant levels. DESIGN: D-met at 50, 100 or 200 mg/kg/doses were administered 0, 6 and 18 hours-post noise. ABRs at baseline and 24 hours post-noise measured TTS. Serum (SOD, CAT, GR, GPx) and cochlear (GSH, GSSG) antioxidant levels measured physiological influence. Three control groups, with impulse or steady-state or without noise, were saline-injected. STUDY SAMPLE: Ten Chinchillas/group. RESULTS: D-met rescue did not significantly reduce TTS or impact serum CAT, SOD, GPx or GR levels vs. noise-exposed control groups, but TTS was greater in all groups relative to no-noise controls. D-met significantly elevated CAT at 50 mg/kg vs. steady-state controls and SOD at 200 mg/kg vs. impulse noise controls. D-met significantly reduced cochlear GSH/GSSG ratios in the 100 mg/kg D-met group vs. impulse noise controls. CONCLUSIONS: While D-met rescue has reduced permanent threshold shift in previous studies, it did not reduce TTS in this study. However, D-met rescue did alter selective serum and cochlear oxidative state changes 24 hours post-noise relative to controls. Results demonstrate TTS studies do not always predict PTS protection in otoprotectant experimental designs.


Subject(s)
Antioxidants , Hearing Loss, Noise-Induced , Animals , Auditory Threshold/physiology , Chinchilla , Evoked Potentials, Auditory, Brain Stem/physiology , Glutathione Disulfide , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/prevention & control , Methionine , Superoxide Dismutase
7.
PLoS One ; 16(12): e0261049, 2021.
Article in English | MEDLINE | ID: mdl-34879107

ABSTRACT

OBJECTIVE: Determine effective preloading timepoints for D-methionine (D-met) otoprotection from steady state or impulse noise and impact on cochlear and serum antioxidant measures. DESIGN: D-met started 2.0-, 2.5-, 3.0-, or 3.5- days before steady-state or impulse noise exposure with saline controls. Auditory brainstem response (ABRs) measured from 2 to 20 kHz at baseline and 21 days post-noise. Samples were then collected for serum (SOD, CAT, GR, GPx) and cochlear (GSH, GSSG) antioxidant levels. STUDY SAMPLE: Ten Chinchillas per group. RESULTS: Preloading D-met significantly reduced ABR threshold shifts for both impulse and steady state noise exposures but with different optimal starting time points and with differences in antioxidant measures. For impulse noise exposure, the 2.0, 2.5, and 3.0 day preloading start provide significant threshold shift protection at all frequencies. Compared to the saline controls, serum GR for the 3.0 and 3.5 day preloading groups was significantly increased at 21 days with no significant increase in SOD, CAT or GPx for any impulse preloading time point. Cochlear GSH, GSSG, and GSH/GSSG ratio were not significantly different from saline controls at 21 days post noise exposure. For steady state noise exposure, significant threshold shift protection occurred at all frequencies for the 3.5, 3.0 and 2.5 day preloading start times but protection only occurred at 3 of the 6 test frequencies for the 2.0 day preloading start point. Compared to the saline controls, preloaded D-met steady-state noise groups demonstrated significantly higher serum SOD for the 2.5-3.5 day starting time points and GPx for the 2.5 day starting time but no significant increase in GR or CAT for any preloading time point. Compared to saline controls, D-met significantly increased cochlear GSH concentrations in the 2 and 2.5 day steady-state noise exposed groups but no significant differences in GSSG or the GSH/GSSG ratio were noted for any steady state noise-exposed group. CONCLUSIONS: The optimal D-met preloading starting time window is earlier for steady state (3.5-2.5 days) than impulse noise (3.0-2.0). At 21 days post impulse noise, D-met increased serum GR for 2 preloading time points but not SOD, CAT, or GpX and not cochlear GSH, GSSG or the GSH/GSSG ratio. At 21 days post steady state noise D-met increased serum SOD and GPx at select preloading time points but not CAT or GR. However D-met did increase the cochlear GSH at select preloading time points but not GSSG or the GSH/GSSG ratio.


Subject(s)
Antioxidants/pharmacology , Auditory Threshold , Cochlea/drug effects , Hearing Loss, Noise-Induced/prevention & control , Methionine/pharmacology , Protective Agents/pharmacology , Animals , Chinchilla , Cochlea/pathology , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/pathology , Male
8.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34943021

ABSTRACT

Hearing loss is a significant health problem that can result from a variety of exogenous insults that generate oxidative stress and inflammation. This can produce cellular damage and impairment of hearing. Radiation damage, ageing, damage produced by cochlear implantation, acoustic trauma and ototoxic drug exposure can all generate reactive oxygen species in the inner ear with loss of sensory cells and hearing loss. Cisplatin ototoxicity is one of the major causes of hearing loss in children and adults. This review will address cisplatin ototoxicity. It includes discussion of the mechanisms associated with cisplatin-induced hearing loss including uptake pathways for cisplatin entry, oxidative stress due to overpowering antioxidant defense mechanisms, and the recently described toxic pathways that are activated by cisplatin, including necroptosis and ferroptosis. The cochlea contains G-protein coupled receptors that can be activated to provide protection. These include adenosine A1 receptors, cannabinoid 2 receptors (CB2) and the Sphingosine 1-Phosphate Receptor 2 (S1PR2). A variety of heat shock proteins (HSPs) can be up-regulated in the cochlea. The use of exosomes offers a novel method of delivery of HSPs to provide protection. A reversible MET channel blocker that can be administered orally may block cisplatin uptake into the cochlear cells. Several protective agents in preclinical studies have been shown to not interfere with cisplatin efficacy. Statins have shown efficacy in reducing cisplatin ototoxicity without compromising patient response to treatment. Additional clinical trials could provide exciting findings in the prevention of cisplatin ototoxicity.

9.
Otol Neurotol ; 42(8): 1261-1268, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34049329

ABSTRACT

HYPOTHESIS: Moringa extract, a naturally occurring anti-oxidant, protects against aminoglycoside-induced hair cell death and hearing loss within the organ of Corti. BACKGROUND: Reactive oxygen species (ROS) arise primarily in the mitochondria and have been implicated in aminoglycoside-induced ototoxicity. Mitochondrial dysfunction results in loss of membrane potential, release of caspases, and cell apoptosis. Moringa extract has not previously been examined as a protective agent for aminoglycoside-induced ototoxicity. METHODS: Putative otoprotective effects of moringa extract were investigated in an organotypic model using murine organ of Corti explants subjected to gentamicin-induced ototoxicity. Assays evaluated hair cell loss, cytochrome oxidase expression, mitochondrial membrane potential integrity, and caspase activity. RESULTS: In vitro application of moringa conferred significant protection from gentamicin-induced hair cell loss at dosages from 25 to 300 µg/mL, with dosages above 100 µg/mL conferring near complete protection. Assays demonstrated moringa extract suppression of ROS, preservation of cytochrome oxidase activity, and reduction in caspase production. CONCLUSION: Moringa extract demonstrated potent antioxidant properties with significant protection against gentamicin ototoxicity in cochlear explants.


Subject(s)
Aminoglycosides , Moringa , Aminoglycosides/toxicity , Animals , Apoptosis , Cell Death , Gentamicins/toxicity , Hair Cells, Auditory , Mice , Organ of Corti , Plant Extracts/pharmacology
10.
Sci Rep ; 11(1): 8116, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854102

ABSTRACT

Regulators of G protein signaling (RGS) accelerate the GTPase activity of G proteins to enable rapid termination of the signals triggered by G protein-coupled receptors (GPCRs). Activation of several GPCRs, including cannabinoid receptor 2 (CB2R) and adenosine A1 receptor (A1AR), protects against noise and drug-induced ototoxicity. One such drug, cisplatin, an anticancer agent used to treat various solid tumors, produces permanent hearing loss in experimental animals and in a high percentage of cancer patients who undergo treatments. In this study we show that cisplatin induces the expression of the RGS17 gene and increases the levels of RGS17 protein which contributes to a significant proportion of the hearing loss. Knockdown of RGS17 suppressed cisplatin-induced hearing loss in male Wistar rats, while overexpression of RGS17 alone produced hearing loss in vivo. Furthermore, RGS17 and CB2R negatively regulate the expression of each other. These data suggest that RGS17 mediates cisplatin ototoxicity by uncoupling cytoprotective GPCRs from their normal G protein interactions, thereby mitigating the otoprotective contributions of endogenous ligands of these receptors. Thus, RGS17 represents a novel mediator of cisplatin ototoxicity and a potential therapeutic target for treating hearing loss.


Subject(s)
Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Hearing Loss/etiology , RGS Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cochlea/cytology , Cochlea/metabolism , Gene Expression/drug effects , Hearing Loss/diagnosis , Male , Neoplasms/drug therapy , RGS Proteins/antagonists & inhibitors , RGS Proteins/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
11.
Front Neurol ; 12: 652674, 2021.
Article in English | MEDLINE | ID: mdl-33767665

ABSTRACT

It is well-known that aminoglycoside antibiotics can cause significant hearing loss and vestibular deficits that have been described in animal studies and in clinical reports. The purpose of this review is to summarize relevant preclinical and clinical publications that discuss the ototoxicity of non-aminoglycoside antibiotics. The major classes of antibiotics other than aminoglycosides that have been associated with hearing loss in animal studies and in patients are discussed in this report. These antibiotics include: capreomycin, a polypeptide antibiotic that has been used to treat patients with drug-resistant tuberculosis, particularly in developing nations; the macrolides, including erythromycin, azithromycin and clarithromycin; and vancomycin. These antibiotics have been associated with ototoxicity, particularly in neonates. It is critical to be aware of the ototoxic potential of these antibiotics since so much attention has been given to the ototoxicity of aminoglycoside antibiotics in the literature.

12.
Expert Opin Drug Metab Toxicol ; 16(10): 965-982, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32757852

ABSTRACT

INTRODUCTION: Cisplatin is a highly effective chemotherapeutic agent against a variety of solid tumors in adults and in children. Unfortunately, a large percentage of patients suffer permanent sensorineural hearing loss. Up to 60% of children and at least 50% of adults suffer this complication that seriously compromises their quality of life. Hearing loss is due to damage to the sensory cells in the inner ear. The mechanisms of cochlear damage are still being investigated. However, it appears that inner ear damage is triggered by reactive oxygen species (ROS) formation and inflammation 34. AREAS COVERED: We discuss a number of potential therapeutic targets that can be addressed to provide hearing protection. These strategies include enhancing the endogenous antioxidant pathways, heat shock proteins, G protein coupled receptors and counteracting ROS and reactive nitrogen species, and blocking pathways that produce inflammation, including TRPV1 and STAT1 36. EXPERT OPINION: Numerous potential protective agents show promise in animal models by systemic or local administration. However, clinical trials have not shown much efficacy to date with the exception of sodium thiosulfate. There is an urgent need to discover safe and effective protective agents that do not interfere with the efficacy of cisplatin against tumors yet preserve hearing 151.


Subject(s)
Antineoplastic Agents/adverse effects , Ototoxicity/prevention & control , Platinum Compounds/adverse effects , Adult , Animals , Antineoplastic Agents/administration & dosage , Child , Cisplatin/administration & dosage , Cisplatin/adverse effects , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Humans , Neoplasms/drug therapy , Ototoxicity/etiology , Platinum Compounds/administration & dosage , Protective Agents/administration & dosage , Protective Agents/adverse effects , Protective Agents/pharmacology , Quality of Life , Reactive Oxygen Species/metabolism
13.
Front Cell Neurosci ; 13: 300, 2019.
Article in English | MEDLINE | ID: mdl-31338024

ABSTRACT

Systemic delivery of therapeutics for targeting the cochlea to prevent or treat hearing loss is challenging. Systemic drugs have to cross the blood-labyrinth barrier (BLB). BLB can significantly prevent effective penetration of drugs in appropriate concentrations to protect against hearing loss caused by inflammation, ototoxic drugs, or acoustic trauma. This obstacle may be obviated by local administration of protective agents. This route can deliver higher concentration of drug compared to systemic application and preclude systemic side effects. Protective agents have been administered by intra-tympanic injection in numerous preclinical studies. Drugs such as steroids, etanercept, D and L-methionine, pifithrin-alpha, adenosine agonists, melatonin, kenpaullone (a cyclin-dependent kinase 2 (CDK2) inhibitor) have been reported to show efficacy against cisplatin ototoxicity in animal models. Several siRNAs have been shown to ameliorate cisplatin ototoxicity when administered by intra-tympanic injection. The application of corticosteroids and a number of other drugs with adjuvants appears to enhance efficacy. Administration of siRNAs to knock down AMPK kinase, liver kinase B1 (LKB1) or G9a in the cochlea have been found to ameliorate noise-induced hearing loss. The local administration of these compounds appears to be effective in protecting the cochlea against damage from cisplatin or noise trauma. Furthermore the intra-tympanic route yields maximum protection in the basal turn of the cochlea which is most vulnerable to cisplatin ototoxicity and noise trauma. There appears to be very little transfer of these agents to the systemic circulation. This would avoid potential side effects including interference with anti-tumor efficacy of cisplatin. Nanotechnology offers strategies to effectively deliver protective agents to the cochlea. This review summarizes the pharmacology of local drug delivery by intra-tympanic injection to prevent hearing loss caused by cisplatin and noise exposure in animals. Future refinements in local protective agents provide exciting prospects for amelioration of hearing loss resulting from cisplatin or noise exposure.

14.
Sci Rep ; 9(1): 9571, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31267026

ABSTRACT

Adenosine A1 receptors (A1AR) are well characterized for their role in cytoprotection. Previous studies have demonstrated the presence of these receptors in the cochlea where their activation were shown to suppress cisplatin-induced inflammatory response and the resulting ototoxicity. Inhibition of A1AR by caffeine, a widely consumed psychoactive substance, could antagonize the endogenous protective role of these receptors in cochlea and potentiate cisplatin-induced hearing loss. This hypothesis was tested in a rat model of cisplatin ototoxicity following oral administration of caffeine. We report here that single-dose administration of caffeine exacerbates cisplatin-induced hearing loss without increasing the damage to outer hair cells (OHCs), but increased synaptopathy and inflammation in the cochlea. These effects of caffeine were mediated by its blockade of A1AR, as co-administration of R-PIA, an A1AR agonist, reversed the detrimental actions of caffeine and cisplatin on hearing loss. Multiple doses of caffeine exacerbated cisplatin ototoxicity which was associated with damage to OHCs and cochlear synaptopathy. These findings highlight a possible drug-drug interaction between caffeine and cisplatin for ototoxicity and suggest that caffeine consumption should be cautioned in cancer patients treated with a chemotherapeutic regimen containing cisplatin.


Subject(s)
Antineoplastic Agents/adverse effects , Caffeine/administration & dosage , Central Nervous System Stimulants/administration & dosage , Cisplatin/adverse effects , Hearing Loss/etiology , Administration, Oral , Animals , Apoptosis/drug effects , Biomarkers , Caffeine/adverse effects , Central Nervous System Stimulants/adverse effects , Cochlea/drug effects , Drug Synergism , Fluorescent Antibody Technique , Hearing Loss/metabolism , Hearing Loss/pathology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Rats , Synaptic Potentials/drug effects
15.
Semin Hear ; 40(2): 197-204, 2019 May.
Article in English | MEDLINE | ID: mdl-31036996

ABSTRACT

Cisplatin is a highly effective antineoplastic agent used to treat solid tumors. Unfortunately, the administration of this drug leads to significant side effects, including ototoxicity, nephrotoxicity, and neurotoxicity. This review addresses the mechanisms of cisplatin-induced ototoxicity and various strategies tested to prevent this distressing adverse effect. The molecular pathways underlying cisplatin ototoxicity are still being investigated. Cisplatin enters targeted cells in the cochlea through the action of several transporters. Once it enters the cochlea, cisplatin is retained for months to years. It can cause DNA damage, inhibit protein synthesis, and generate reactive oxygen species that can lead to inflammation and apoptosis of outer hair cells, resulting in permanent hearing loss. Strategies to prevent cisplatin ototoxicity have utilized antioxidants, transport inhibitors, G-protein receptor agonists, and anti-inflammatory agents. There are no FDA-approved drugs to prevent cisplatin ototoxicity. It is critical that potential protective agents do not interfere with the antitumor efficacy of cisplatin.

16.
Sci Rep ; 9(1): 4131, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858408

ABSTRACT

Capsaicin, the spicy component of hot chili peppers activates the TRPV1 pain receptors, and causes rapid desensitization. Capsaicin also ameliorates cisplatin-induced nephrotoxicity. Cisplatin, a commonly used anti-neoplastic agent for solid tumors causes significant hearing loss, nephrotoxicity and peripheral neuropathy. Upregulation of cochlear TRPV1 expression is related to cisplatin-mediated ototoxicity. Here we report that direct TRPV1 activation by localized trans-tympanic (TT) or oral administration of capsaicin (TRPV1 agonist) prevents cisplatin ototoxicity by sustained increased activation of pro-survival transcription factor signal transducer and activator of transcription (STAT3) in the Wistar rat. Cisplatin treatment produced prolonged activation of pro-apoptotic Ser727 p-STAT1 and suppressed Tyr705-p-STAT3 for up to 72 h in the rat cochlea. Our data indicate that capsaicin causes a transient STAT1 activation via TRPV1 activation, responsible for the previously reported temporary threshold shift. Additionally, we found that capsaicin increased cannabinoid receptor (CB2) in the cochlea, which leads to pro-survival Tyr705-p-STAT3 activation. This tilts the delicate balance of p-STAT3/p-STAT1 towards survival. Furthermore, capsaicin mediated protection is lost when CB2 antagonist AM630 is administered prior to capsaicin treatment. In conclusion, capsaicin otoprotection appears to be mediated by activation of CB2 receptors in the cochlea which are coupled to both STAT1 and STAT3 activation.


Subject(s)
Antineoplastic Agents/toxicity , Capsaicin/pharmacology , Cisplatin/toxicity , Cochlea/metabolism , Ototoxicity/prevention & control , Receptor, Cannabinoid, CB2/metabolism , Sensory System Agents/pharmacology , Animals , Cannabinoid Receptor Antagonists/pharmacology , Capsaicin/therapeutic use , Cell Line , Cochlea/drug effects , Indoles/pharmacology , Male , Mice , Mice, SCID , Ototoxicity/drug therapy , Rats , Rats, Wistar , Receptor, Cannabinoid, CB2/antagonists & inhibitors , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Sensory System Agents/therapeutic use , TRPV Cation Channels/metabolism
17.
Front Cell Neurosci ; 12: 271, 2018.
Article in English | MEDLINE | ID: mdl-30186120

ABSTRACT

Previous studies have demonstrated the presence of cannabinoid 2 receptor (CB2R) in the rat cochlea which was induced by cisplatin. In an organ of Corti-derived cell culture model, it was also shown that an agonist of the CB2R protected these cells against cisplatin-induced apoptosis. In the current study, we determined the distribution of CB2R in the mouse and rat cochleae and examined whether these receptors provide protection against cisplatin-induced hearing loss. In a knock-in mouse model expressing the CB2R tagged with green fluorescent protein, we show distribution of CB2R in the organ of Corti, stria vascularis, spiral ligament and spiral ganglion cells. A similar distribution of CB2R was observed in the rat cochlea using a polyclonal antibody against CB2R. Trans-tympanic administration of (2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone (JWH015), a selective agonist of the CB2R, protected against cisplatin-induced hearing loss which was reversed by blockade of this receptor with 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone (AM630), an antagonist of CB2R. JWH015 also reduced the loss of outer hair cells (OHCs) in the organ of Corti, loss of inner hair cell (IHC) ribbon synapses and loss of Na+/K+-ATPase immunoreactivity in the stria vascularis. Administration of AM630 alone produced significant hearing loss (measured by auditory brainstem responses) which was not associated with loss of OHCs, but led to reductions in the levels of IHC ribbon synapses and strial Na+/K+-ATPase immunoreactivity. Furthermore, knock-down of CB2R by trans-tympanic administration of siRNA sensitized the cochlea to cisplatin-induced hearing loss at the low and middle frequencies. Hearing loss induced by cisplatin and AM630 in the rat was associated with increased expression of genes for oxidative stress and inflammatory proteins in the rat cochlea. In vitro studies indicate that JWH015 did not alter cisplatin-induced killing of cancer cells suggesting this agent could be safely used during cisplatin chemotherapy. These data unmask a protective role of the cochlear endocannabinoid/CB2R system which appears tonically active under normal conditions to preserve normal hearing. However, an exogenous agonist is needed to boost the activity of endocannabinoid/CB2R system for protection against a more traumatic cochlear insult, as observed with cisplatin administration.

18.
J Vis Exp ; (133)2018 03 16.
Article in English | MEDLINE | ID: mdl-29608150

ABSTRACT

The systemic administration of protective agents to treat drug-induced ototoxicity is limited by the possibility that these protective agents could interfere with the chemotherapeutic efficacy of the primary drugs. This is especially true for the drug cisplatin, whose anticancer actions are attenuated by antioxidants which provide adequate protection against hearing loss. Other current or potential otoprotective agents could pose a similar problem, if administered systemically. The application of various biologicals or protective agents directly to the cochlea would allow for high levels of these agents locally with limited systemic side effects. In this report, we demonstrate a trans-tympanic method of delivery of various drugs or biological reagents to the cochlea, which should enhance basic science research on the cochlea and provide a simple way of directing the use of otoprotective agents in the clinics. This report details a method of trans-tympanic drug delivery and provides examples of how this technique has been used successfully in experimental animals to treat cisplatin ototoxicity.


Subject(s)
Cisplatin/administration & dosage , Cisplatin/adverse effects , Cochlea/drug effects , Hearing Loss/prevention & control , Protective Agents/administration & dosage , Tympanic Membrane/drug effects , Animals , Drug Delivery Systems , Drug Interactions , Hearing Loss/chemically induced , Male , Rats , Rats, Wistar
19.
Front Cell Neurosci ; 11: 338, 2017.
Article in English | MEDLINE | ID: mdl-29163050

ABSTRACT

Evidence of significant hearing loss during the early days of use of cisplatin as a chemotherapeutic agent in cancer patients has stimulated research into the causes and treatment of this side effect. It has generally been accepted that hearing loss is produced by excessive generation of reactive oxygen species (ROS) in cell of the cochlea, which led to the development of various antioxidants as otoprotective agents. Later studies show that ROS could stimulate cochlear inflammation, suggesting the use of anti-inflammatory agents for treatment of hearing loss. In this respect, G-protein coupled receptors, such as adenosine A1 receptor and cannabinoid 2 receptors, have shown efficacy in the treatment of hearing loss in experimental animals by increasing ROS scavenging, suppressing ROS generation, or by decreasing inflammation. Inflammation could be triggered by activation of transient receptor potential vanilloid 1 (TRPV1) channels in the cochlea and possibly other TRP channels. Targeting TRPV1 for knockdown has also been shown to be a useful strategy for ensuring otoprotection. Cisplatin entry into cochlear hair cells is mediated by various transporters, inhibitors of which have been shown to be effective for treating hearing loss. Finally, cisplatin-induced DNA damage and activation of the apoptotic process could be targeted for cisplatin-induced hearing loss. This review focuses on recent development in our understanding of the mechanisms underlying cisplatin-induced hearing loss and provides examples of how drug therapies have been formulated based on these mechanisms.

20.
Cell Death Dis ; 8(7): e2921, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28703809

ABSTRACT

Cisplatin-induced ototoxicity is one of the major factors limiting cisplatin chemotherapy. Ototoxicity results from damage to outer hair cells (OHCs) and other regions of the cochlea. At the cellular level, cisplatin increases reactive oxygen species (ROS) leading to cochlear inflammation and apoptosis. Thus, ideal otoprotective drugs should target oxidative stress and inflammatory mechanisms without interfering with cisplatin's chemotherapeutic efficacy. In this study, we show that epigallocatechin-3-gallate (EGCG) is a prototypic agent exhibiting these properties of an effect otoprotective agent. Rats administered oral EGCG demonstrate reduced cisplatin-induced hearing loss, reduced loss of OHCs in the basal region of the cochlea and reduced oxidative stress and apoptotic markers. EGCG also protected against the loss of ribbon synapses associated with inner hair cells and Na+/K+ ATPase α1 in the stria vascularis and spiral ligament. In vitro studies showed that EGCG reduced cisplatin-induced ROS generation and ERK1/2 and signal transducer and activator of transcription-1 (STAT1) activity, but preserved the activity of STAT3 and Bcl-xL. The increase in STAT3/STAT1 ratio appears critical for mediating its otoprotection. EGCG did not alter cisplatin-induced apoptosis of human-derived cancer cells or cisplatin antitumor efficacy in a xenograft tumor model in mice because of its inability to rescue the downregulation of STAT3 in these cells. These data suggest that EGCG is an ideal otoprotective agent for treating cisplatin-induced hearing loss without compromising its antitumor efficacy.


Subject(s)
Antineoplastic Agents/toxicity , Apoptosis/drug effects , Catechin/analogs & derivatives , Cisplatin/toxicity , Cochlea/drug effects , Animals , Catechin/pharmacology , Cell Line , Cochlea/metabolism , Cochlea/pathology , HCT116 Cells , Hearing Loss/etiology , Hearing Loss/metabolism , Hearing Loss/pathology , Humans , Male , Mice , Phosphorylation/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...