Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 183: 109481, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31442800

ABSTRACT

The toxicity and environmental risk of chemicals, such as the antiepileptic drug carbamazepine (CBZ), is commonly assessed using standardized laboratory tests and laboratory-to-field extrapolation. To investigate the toxicity of CBZ to aquatic key organisms in a more complex and environmentally relevant scenario, we conducted a 32-day multiple-stress experiment in artificial indoor streams. We exposed the non-biting midge Chironomus riparius, the blackworm Lumbriculus variegatus, and the New Zealand mud snail Potamopyrgus antipodarum to 80 and 400 µg CBZ/L in six artificial indoor streams. In addition to hydraulic stress, species' interaction, and low organic content in the sediment, organisms were co-exposed to the herbicide terbutryn (TBY) as a second chemical stressor at a concentration of 6 µg/L. The exposure to CBZ under multiple stress conditions resulted in a 10- to more than 25-fold higher toxicity in C. riparius and P. antipodarum when compared to a previous, standardized laboratory experiment. The co-exposure to TBY enhanced the adverse effects of CBZ on snails (reduced production of embryos). This effect was additive as the single exposure to TBY also reduced the reproduction of snails, most likely through the reduction of biofilm biomass. The emergence of C. riparius declined at a CBZ concentration of 400 µg/L (without the co-exposure to TBY) and at 80 µg/L in combination with TBY. The difference in sensitivity between laboratory and indoor stream experiments is indicative of a potential underestimation of risk when toxicity data are extrapolated to field conditions. The present results suggest the inclusion of non-chemical and chemical stressors in environmental hazard and risk assessments.


Subject(s)
Anticonvulsants/toxicity , Carbamazepine/toxicity , Water Pollutants, Chemical/toxicity , Animals , Chironomidae/drug effects , Drug Interactions , Gastropoda/drug effects , Herbicides/toxicity , Oligochaeta/drug effects , Reproduction/drug effects , Risk Assessment , Rivers , Stress, Physiological , Triazines/toxicity
2.
Environ Sci Eur ; 30(1): 35, 2018.
Article in English | MEDLINE | ID: mdl-30294514

ABSTRACT

BACKGROUND: Macroinvertebrates in aquatic ecosystems are repeatedly exposed to pesticides during their life cycle. Effects of consecutive exposure during different life stages and possible synergistic effects are not addressed in the standardized hazard assessment. The present study investigated two environmentally relevant exposure scenarios in batch (microcosm) and artificial indoor stream (mesocosm) experiments using the larvae of the mayfly Rhithrogena semicolorata (grazer) and natural aufwuchs. Grazers were analysed regarding growth, physiological condition, and drift behaviour, while the aufwuchs was analysed in terms of biomass using the particulate organic carbon as well as the chlorophyll a content. The aim was to reveal direct and indirect effects of an herbicide exposure during autumn on juvenile grazers and an insecticide exposure during spring on semi-juvenile grazers. RESULTS: Direct and indirect effects were found in both exposure scenarios at environmentally relevant concentrations. In the herbicide exposure scenario with terbutryn, clear direct effects on the aufwuchs community with a LOEC of 0.38 µg L-1 were found. Effect levels of grazers due to indirect effects were equal, with the overnight drift being the most sensitive grazer endpoint. In the insecticide exposure scenario, clear lethal and sub lethal effects of lambda-cyhalothrin were evident. Derived LC50 values for the artificial indoor stream and batch experiment were 2.42 µg g-1 OC (69 days) and 1.2 µg g-1 OC (28 days), respectively. Sub lethal effects in terms of increased drift as well-reduced growth and triglyceride levels were found at concentrations of 1.4 and 0.09 µg g-1 OC (LOECs). These results were confirmed by the batch experiment, which revealed effect values in the similar range. Finally, a clear indirect effect of the insecticide on the aufwuchs was evident in the batch experiment with an LOEC at 0.9 µg g-1 OC. CONCLUSION: Toxicity Exposure Ratios calculated with the derived effect values indicate a risk for the investigated grazer by both pesticides. Moreover, observed indirect effects during the herbicide exposure seem to be able to affect the grazers during a second exposure with an insecticide, due to reduced physiological conditions. We suggest further research with time-shifted exposure scenarios to gain a better understanding of the complex interactions of pesticides with the life cycle and the food webs of macroinvertebrates.

3.
Sci Total Environ ; 598: 900-909, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28458207

ABSTRACT

A number of studies have revealed ammonia to be toxic to aquatic organisms; however, little is known about its effects under natural conditions. To elucidate the role of ammonia, we conducted 96-h acute toxicity tests as well as a whole-ecosystem chronic toxicity test for one year in ten 600-m2 ponds. Three common cyprinids, silver carp Hypophthalmichthys molitrix Val. (H.m.), bighead carp Aristichthys nobilis Richardson (A.n.), and gibel carp Carassius auratus gibelio Bloch (C.g.), were used as test organisms. The 96-h LC50 values of un-ionized ammonia (NH3) for H.m., A.n., and C.g. were 0.35, 0.33, and 0.73mgL-1, respectively. In the ponds, annual mean NH3 ranged between 0.01 and 0.54mgL-1, with 4 ponds having a NH3 higher than the LC50 of A.n. (lowest LC50 in this study). No fish were found dead in the high-nitrogen ponds, but marked histological changes were found in livers and gills. Despite these changes, the specific growth rate of H.m. and A.n. increased significantly with NH3. Our pond results suggest that fish might be more tolerant to high ammonia concentrations in natural aquatic ecosystems than under laboratory conditions. Our finding from field experiments thus suggests that the existing regulatory limits for reactive nitrogen (NH3) established from lab toxicity tests might be somewhat too high at the ecosystem conditions. Field-scale chronic toxicity tests covering full life histories of fish and other aquatic organisms are therefore encouraged in order to optimize determination of the effects of ammonia in natural environments.


Subject(s)
Ammonia/toxicity , Cyprinidae , Water Pollutants, Chemical/toxicity , Animals , Carps , Ecosystem , Goldfish , Ponds , Toxicity Tests, Acute , Toxicity Tests, Chronic
4.
FEMS Microbiol Ecol ; 92(5): fiw060, 2016 May.
Article in English | MEDLINE | ID: mdl-27073234

ABSTRACT

To test the hypothesis of a seasonal relationship of antibiotic prescriptions for outpatients and the abundance of antibiotic resistance genes (ARGs) in the wastewater, we investigated the distribution of prescriptions and different ARGs in the Dresden sewer system and wastewater treatment plant during a two-year sampling campaign. Based on quantitative PCR (qPCR), our results show a clear seasonal pattern for relative ARGs abundances. The higher ARGs levels in autumn and winter coincide with the higher rates of overall antibiotic prescriptions. While no significant differences of relative abundances were observed before and after the wastewater treatment for most of the relative ARGs, the treatment clearly influenced the microbial community composition and abundance. This indicates that the ARGs are probably not part of the dominant bacterial taxa, which are mainly influenced by the wastewater treatment processes, or that plasmid carrying bacteria remain constant, while plasmid free bacteria decrease. An exception was vancomycin (vanA), showing higher relative abundance in treated wastewater. It is likely that a positive selection or community changes during wastewater treatment lead to an enrichment of vanA. Our results demonstrate that in a medium-term study the combination of qPCR and next generation sequencing corroborated by drug-related health data is a suitable approach to characterize seasonal changes of ARGs in wastewater and treated wastewater.


Subject(s)
Bacteria/drug effects , Drug Resistance, Bacterial , Genes, Bacterial , Wastewater/microbiology , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , Germany , High-Throughput Nucleotide Sequencing , Prescription Drugs/therapeutic use , Real-Time Polymerase Chain Reaction , Seasons , Sequence Analysis, DNA , Water Purification
5.
Environ Sci Pollut Res Int ; 23(5): 4218-34, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26122573

ABSTRACT

Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 µg/L Ag(+) (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-µg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-µg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 µg/L AgNP samples than the 20-µg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 µg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied.


Subject(s)
Biopolymers/analysis , Metal Nanoparticles/toxicity , Microbial Consortia/drug effects , Silver/toxicity , Water Microbiology , Water Pollutants, Chemical/toxicity , Biofilms/growth & development , Biomass , Chlorophyta/drug effects , Diatoms/drug effects , Ecosystem , Ions , Silver Nitrate/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...