Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Phys Rev Lett ; 129(22): 226401, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493449

ABSTRACT

We show that graphene can be magnetized by coupling to a ferromagnetic Co film through a Au monolayer. The presence of dislocation loops under graphene leads to a ferrimagnetic ordering of moments in the two C sublattices. It is shown that the band gap of ∼80 meV in the K[over ¯] point has a magnetic nature and exists for ferrimagnetic ordering. Interplay between Rashba and exchange couplings is evidenced by spin splitting asymmetry in spin-ARPES measurements and fully supported by DFT calculation of a (9×9) unit cell. Owing to sign-opposite Berry curvatures for K[over ¯] and K[over ¯]^{'} valleys, the synthesized system is promising for the realization of a circular dichroism Hall effect.


Subject(s)
Graphite , Environment , Fruit
2.
J Phys Condens Matter ; 33(3): 035001, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33078711

ABSTRACT

Technological applications involving 2D MoS2 require transfer of chemical vapor deposition (CVD) grown material from its original substrate and subsequent lithographic processes. Inevitably, those steps contaminate the surface of the 2D material with polymeric residues affecting the electronic and optical properties of the MoS2. Annealing in forming gas is considered an efficient treatment to partially remove such residues. However, hydrogen also interacts with MoS2 creating or saturating sulfur vacancies. Sulfur vacancies are known to be at the origin of n-doping evident in the majority of as-grown MoS2 samples. In this context, investigating the impact of thermal annealing in forming gas on the electronic and optical properties of MoS2 monolayer is technologically important. In order to address this topic, we have systematically studied the evolution of CVD grown MoS2 monolayer using Raman spectroscopy, photoluminescence, x-ray photoelectron spectroscopy and transport measurements through a series of thermal annealing in forming gas at temperatures up to 500 °C. Efficient removal of the polymeric residues is demonstrated at temperatures as low as 200 °C. Above this value, carrier density modulation is identified by photoluminescence, x-ray photoelectron spectroscopy and electrical characterization and is correlated to the creation of sulfur vacancies. Finally, the degradation of the MoS2 single layer is verified with annealing at or above 350 °C through Raman and photocurrent measurements.

3.
Nano Lett ; 18(3): 1564-1574, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29365269

ABSTRACT

A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.

4.
ACS Nano ; 11(6): 6336-6345, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28494148

ABSTRACT

Regardless of the widely accepted opinion that there is no Raman signal from single-layer graphene when it is strongly bonded to a metal surface, we present Raman spectra of a graphene monolayer on Ni(111) and Co(0001) substrates. The high binding energy of carbon to these surfaces allows formation of lattice-matched (1 × 1) structures where graphene is significantly stretched. This is reflected in a record-breaking shift of the Raman G band by more than 100 cm-1 relative to the case of freestanding graphene. Using electron diffraction and photoemission spectroscopy, we explore the aforementioned systems together with polycrystalline graphene on Co and analyze possible intercalation of oxygen at ambient conditions. The results obtained are fully supported by Raman spectroscopy. Performing a theoretical investigation of the phonon dispersions of freestanding graphene and stretched graphene on the strongly interacting Co surface, we explain the main features of the Raman spectra. Our results create a reliable platform for application of Raman spectroscopy in diagnostics of chemisorbed graphene and related materials.

5.
Nano Lett ; 16(7): 4535-43, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27248659

ABSTRACT

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.

6.
ACS Nano ; 9(7): 7314-22, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26121999

ABSTRACT

Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.

7.
Nano Lett ; 15(4): 2396-401, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25734657

ABSTRACT

With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons. Here, we show that graphene grown under appropriate conditions on Co(0001) demonstrates perfect structural properties and simultaneously exhibits highly spin-polarized charge carriers. The latter was conclusively proven by observation of a single-spin Dirac cone near the Fermi level. This was accomplished experimentally using spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using the spin degree of freedom.

SELECTION OF CITATIONS
SEARCH DETAIL
...