Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39005318

ABSTRACT

Recent years have seen intense interest in the development of point-of-care nucleic acid diagnostic technologies to address the scaling limitations of laboratory-based approaches. Chief among these are combinations of isothermal amplification approaches with CRISPR-based detection and readouts of target products. Here, we contribute to the growing body of rapid, programmable point-of-care pathogen tests by developing and optimizing a one-pot NASBA-Cas13a nucleic acid detection assay. This test uses the isothermal amplification technique NASBA to amplify target viral nucleic acids, followed by Cas13a-based detection of amplified sequences. We first demonstrate an in-house formulation of NASBA that enables optimization of individual NASBA components. We then present design rules for NASBA primer sets and LbuCas13a guide RNAs for fast and sensitive detection of SARS-CoV-2 viral RNA fragments, resulting in 20 - 200 aM sensitivity without any specialized equipment. Finally, we explore the combination of high-throughput assay condition screening with mechanistic ordinary differential equation modeling of the reaction scheme to gain a deeper understanding of the NASBA-Cas13a system. This work presents a framework for developing a mechanistic understanding of reaction performance and optimization that uses both experiments and modeling, which we anticipate will be useful in developing future nucleic acid detection technologies.

2.
ACS Synth Biol ; 12(10): 2909-2921, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37699423

ABSTRACT

As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by simply adding water and DNA to freeze-dried crude extracts of non-pathogenic Escherichia coli. We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a "build-your-own" activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high-school students in their classrooms─and at home─without professional laboratory equipment. This work promises to catalyze access to interactive synthetic biology education opportunities.


Subject(s)
Synthetic Biology , Water Quality , Humans , Synthetic Biology/education
3.
bioRxiv ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36711593

ABSTRACT

As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by just-adding-water and DNA to freeze-dried crude extracts of Escherichia coli . We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a 'build-your-own' activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high school students in their classrooms - and at home - without professional laboratory equipment or researcher oversight. This work promises to catalyze access to interactive synthetic biology education opportunities.

4.
ACS Synth Biol ; 12(2): 405-418, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36700560

ABSTRACT

Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.


Subject(s)
Protein Biosynthesis , Proteomics , Escherichia coli/genetics , Escherichia coli/metabolism , Cell-Free System/metabolism , Plant Extracts/metabolism
5.
Nucleic Acids Res ; 50(6): 3523-3534, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35258601

ABSTRACT

RNA-guided nucleases from CRISPR-Cas systems expand opportunities for precise, targeted genome modification. Endogenous CRISPR-Cas systems in many prokaryotes are attractive to circumvent expression, functionality, and unintended activity hurdles posed by heterologous CRISPR-Cas effectors. However, each CRISPR-Cas system recognizes a unique set of protospacer adjacent motifs (PAMs), which requires identification by extensive screening of randomized DNA libraries. This challenge hinders development of endogenous CRISPR-Cas systems, especially those based on multi-protein effectors and in organisms that are slow-growing or have transformation idiosyncrasies. To address this challenge, we present Spacer2PAM, an easy-to-use, easy-to-interpret R package built to predict and guide experimental determination of functional PAM sequences for any CRISPR-Cas system given its corresponding CRISPR array as input. Spacer2PAM can be used in a 'Quick' method to generate a single PAM prediction or in a 'Comprehensive' method to inform targeted PAM libraries small enough to screen in difficult to transform organisms. We demonstrate Spacer2PAM by predicting PAM sequences for industrially relevant organisms and experimentally identifying seven PAM sequences that mediate interference from the Spacer2PAM-informed PAM library for the type I-B CRISPR-Cas system from Clostridium autoethanogenum. We anticipate that Spacer2PAM will facilitate the use of endogenous CRISPR-Cas systems for industrial biotechnology and synthetic biology.


Subject(s)
CRISPR-Cas Systems , Computational Biology/methods , CRISPR-Cas Systems/genetics , Clostridium/genetics , Gene Library , Nucleotide Motifs
6.
ACS Synth Biol ; 11(2): 835-842, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35029964

ABSTRACT

Training the future synthetic biology workforce requires the opportunity for students to be exposed to biotechnology concepts and activities in secondary education. Detecting Wolbachia bacteria in arthropods using polymerase chain reaction (PCR) has become a common way for secondary students to investigate and apply recombinant DNA technology in the science classroom. Despite this important activity, cutting-edge biotechnologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-based diagnostics have yet to be widely implemented in the classroom. To address this gap, we present a freeze-dried CRISPR-Cas12 sensing reaction to complement traditional recombinant DNA technology education and teach synthetic biology concepts. The reactions accurately detect Wolbachia from arthropod-derived PCR samples in under 2 h and can be stored at room temperature for over a month without appreciable degradation. The reactions are easy-to-use and cost less than $40 to implement for a classroom of 22 students including the cost of reusable equipment. We see these freeze-dried CRISPR-Cas12 reactions as an accessible way to incorporate synthetic biology education into the existing biology curriculum, which will expand biology educational opportunities in science, technology, engineering, and mathematics.


Subject(s)
Wolbachia , Biotechnology , CRISPR-Cas Systems/genetics , Gene Editing , Genetic Engineering , Humans , Synthetic Biology/education , Wolbachia/genetics
7.
Metab Eng ; 62: 95-105, 2020 11.
Article in English | MEDLINE | ID: mdl-32540392

ABSTRACT

Gas fermentation by autotrophic bacteria, such as clostridia, offers a sustainable path to numerous bioproducts from a range of local, highly abundant, waste and low-cost feedstocks, such as industrial flue gases or syngas generated from biomass or municipal waste. Unfortunately, designing and engineering clostridia remains laborious and slow. The ability to prototype individual genetic part function, gene expression patterns, and biosynthetic pathway performance in vitro before implementing designs in cells could help address these bottlenecks by speeding up design. Unfortunately, a high-yielding cell-free gene expression (CFE) system from clostridia has yet to be developed. Here, we report the development and optimization of a high-yielding (236 ± 24 µg/mL) batch CFE platform from the industrially relevant anaerobe, Clostridium autoethanogenum. A key feature of the platform is that both circular and linear DNA templates can be applied directly to the CFE reaction to program protein synthesis. We demonstrate the ability to prototype gene expression, and quantitatively map aerobic cell-free metabolism in lysates from this system. We anticipate that the C. autoethanogenum CFE platform will not only expand the protein synthesis toolkit for synthetic biology, but also serve as a platform in expediting the screening and prototyping of gene regulatory elements in non-model, industrially relevant microbes.


Subject(s)
Cell-Free System , Metabolic Engineering , Metabolic Networks and Pathways , Cell-Free System/metabolism , Clostridium , Protein Biosynthesis
8.
ACS Synth Biol ; 8(5): 1001-1009, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30925042

ABSTRACT

Recent advances in synthetic biology have resulted in biological technologies with the potential to reshape the way we understand and treat human disease. Educating students about the biology and ethics underpinning these technologies is critical to empower them to make informed future policy decisions regarding their use and to inspire the next generation of synthetic biologists. However, hands-on, educational activities that convey emerging synthetic biology topics can be difficult to implement due to the expensive equipment and expertise required to grow living cells. We present BioBits Health, an educational kit containing lab activities and supporting curricula for teaching antibiotic resistance mechanisms and CRISPR-Cas9 gene editing in high school classrooms. This kit links complex biological concepts to visual, fluorescent readouts in user-friendly freeze-dried cell-free reactions. BioBits Health represents a set of educational resources that promises to encourage teaching of cutting-edge, health-related synthetic biology topics in classrooms and other nonlaboratory settings.


Subject(s)
Genetic Engineering , Synthetic Biology/education , CRISPR-Cas Systems/genetics , Cell-Free System , Drug Resistance, Microbial/genetics , Gene Editing/methods , Gene Transfer, Horizontal , Humans , Optical Imaging , Synthetic Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...