Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Med (Berl) ; 93(2): 165-76, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25559265

ABSTRACT

Anderson disease (ANDD) or chylomicron retention disease (CMRD) is a rare, hereditary lipid malabsorption syndrome associated with mutations in the SAR1B gene that is characterized by failure to thrive and hypocholesterolemia. Although the SAR1B structure has been resolved and its role in formation of coat protein II (COPII)-coated carriers is well established, little is known about the requirement for SAR1B during embryogenesis. To address this question, we have developed a zebrafish model of Sar1b deficiency based on antisense oligonucleotide knockdown. We show that zebrafish sar1b is highly conserved among vertebrates; broadly expressed during development; and enriched in the digestive tract organs, brain, and craniofacial skeleton. Consistent with ANDD symptoms of chylomicron retention, we found that dietary lipids in Sar1b-deficient embryos accumulate in enterocytes. Transgenic expression analysis revealed that Sar1b is required for growth of exocrine pancreas and liver. Furthermore, we found abnormal differentiation and maturation of craniofacial cartilage associated with defects in procollagen II secretion and absence of select, neuroD-positive neurons of the midbrain and hindbrain. The model presented here will help to systematically dissect developmental roles of Sar1b and to discover molecular and cellular mechanisms leading to organ-specific ANDD pathology. Key messages: Sar1b depletion phenotype in zebrafish resembles Anderson disease deficits. Sar1b deficiency results in multi-organ developmental deficits. Sar1b is required for dietary cholesterol uptake into enterocytes.


Subject(s)
Hypobetalipoproteinemias/genetics , Hypobetalipoproteinemias/metabolism , Lipid Metabolism/genetics , Malabsorption Syndromes/genetics , Malabsorption Syndromes/metabolism , Monomeric GTP-Binding Proteins/deficiency , Animals , Animals, Genetically Modified , Body Patterning/genetics , Bone and Bones/embryology , Bone and Bones/metabolism , Brain/embryology , Brain/metabolism , Disease Models, Animal , Gastrointestinal Tract/embryology , Gastrointestinal Tract/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Humans , Immunohistochemistry , Organogenesis/genetics , Phenotype , Zebrafish
2.
Cancer Res ; 74(1): 38-43, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24247717

ABSTRACT

ENOX1 is a highly conserved NADH oxidase that helps to regulate intracellular nicotinamide adenine dinucleotide levels in many cell types, including endothelial cells. Pharmacologic and RNA interference (RNAi)-mediated suppression of ENOX1 impairs surrogate markers of tumor angiogenesis/vasculogenesis, providing support for the concept that ENOX1 represents an antiangiogenic druggable target. However, direct genetic evidence that demonstrates a role for ENOX1 in vascular development is lacking. In this study, we exploited a zebrafish embryonic model of development to address this question. Whole-mount in situ hybridization coupled with immunofluorescence performed on zebrafish embryos demonstrate that enox1 message and translated protein are expressed in most tissues, and its expression is enriched in blood vessels and heart. Morpholino-mediated suppression of Enox1 in Tg(fli1-eGFP) and Tg(flk1-eGFP) zebrafish embryos significantly impairs the development of vasculature and blood circulation. Using in vivo multiphoton microscopy, we show that morpholino-mediated knockdown of enox1 increases NADH levels, consistent with loss of enzyme. VJ115 is a small-molecule inhibitor of Enox1's oxidase activity shown to increase intracellular NADH in endothelial cells; we used VJ115 to determine if the oxidase activity was crucial for vascular development. We found that VJ115 suppressed vasculogenesis in Tg(fli1-eGFP) embryos and impaired circulation. Previously, it was shown that suppression of ENOX1 radiosensitizes proliferating tumor vasculature, a consequence of enhanced endothelial cell apoptosis. Thus, our current findings, coupled with previous research, support the hypothesis that ENOX1 represents a potential cancer therapy target, one that combines molecular targeting with cytotoxic sensitization.


Subject(s)
Endothelium, Vascular/embryology , Endothelium, Vascular/growth & development , Multienzyme Complexes/physiology , NADH, NADPH Oxidoreductases/physiology , Animals , Animals, Genetically Modified , Endothelium, Vascular/enzymology , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Neovascularization, Physiologic/physiology , Zebrafish
3.
Dis Model Mech ; 6(2): 332-41, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23223679

ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia and carries a significant risk of stroke and heart failure. The molecular etiologies of AF are poorly understood, leaving patients with limited therapeutic options. AF has been recognized as an inherited disease in almost 30% of patient cases. However, few genetic loci have been identified and the mechanisms linking genetic variants to AF susceptibility remain unclear. By sequencing 193 probands with lone AF, we identified a Q76E variant within the coding sequence of the bone morphogenetic protein (BMP) antagonist gremlin-2 (GREM2) that increases its inhibitory activity. Functional modeling in zebrafish revealed that, through regulation of BMP signaling, GREM2 is required for cardiac laterality and atrial differentiation during embryonic development. GREM2 overactivity results in slower cardiac contraction rates in zebrafish, and induction of previously identified AF candidate genes encoding connexin-40, sarcolipin and atrial natriuretic peptide in differentiated mouse embryonic stem cells. By live heart imaging in zebrafish overexpressing wild-type or variant GREM2, we found abnormal contraction velocity specifically in atrial cardiomyocytes. These results implicate, for the first time, regulators of BMP signaling in human AF, providing mechanistic insights into the pathogenesis of the disease and identifying potential new therapeutic targets.


Subject(s)
Atrial Fibrillation/genetics , Cell Differentiation/genetics , Disease Models, Animal , Heart Atria/physiopathology , Intercellular Signaling Peptides and Proteins/genetics , Myocytes, Cardiac/pathology , Zebrafish Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Atrial Fibrillation/complications , Atrial Fibrillation/physiopathology , Bone Morphogenetic Proteins/metabolism , Cytokines , Female , Gene Expression Regulation, Developmental , Heart Atria/embryology , Heart Atria/pathology , Heart Rate/physiology , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Middle Aged , Molecular Sequence Data , Myocytes, Cardiac/metabolism , Organogenesis/genetics , Pedigree , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...