Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 137(5): 661-677, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33197925

ABSTRACT

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Subject(s)
Acetamides/pharmacology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Isoindoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Piperidones/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Acetamides/therapeutic use , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Humans , Isoindoles/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Neoplastic Stem Cells/enzymology , Nuclear Factor 45 Protein/physiology , Nuclear Factor 90 Proteins/physiology , Peptide Termination Factors/metabolism , Piperidones/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Proteolysis , Small Molecule Libraries , Stress, Physiological , TOR Serine-Threonine Kinases/physiology , U937 Cells , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
2.
Br J Haematol ; 172(6): 889-901, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26914976

ABSTRACT

Pomalidomide is an IMiD(®) immunomodulatory agent, which has shown clinically significant benefits in relapsed and/or refractory multiple myeloma (rrMM) patients when combined with dexamethasone, regardless of refractory status to lenalidomide or bortezomib. (Schey et al, ; San Miguel et al, 2013; Richardson et al, 2014; Scott, ) In this work, we present preclinical data showing that the combination of pomalidomide with dexamethasone (PomDex) demonstrates potent anti-proliferative and pro-apoptotic activity in both lenalidomide-sensitive and lenalidomide-resistant MM cell lines. PomDex also synergistically inhibited tumour growth compared with single-agent treatment in xenografts of lenalidomide-resistant H929 R10-1 cells. Typical hallmarks of IMiD compound activity, including IKZF3 (Aiolos) degradation, and the downregulation of interferon regulatory factor (IRF) 4 and MYC, seen in lenalidomide-sensitive H929 MM cell lines, were also observed in PomDex-treated lenalidomide-resistant H929 MM cells. Remarkably, this resulted in strong, synergistic effects on the induction of apoptosis in both lenalidomide-sensitive and resistant MM cells. Furthermore, gene expression profiling revealed a unique differential gene expression pattern in PomDex-treated samples, highlighted by the modulation of pro-apoptotic pathways in lenalidomide-resistant cells. These results provide key insights into molecular mechanisms of PomDex in the lenalidomide-resistant setting.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Multiple Myeloma/drug therapy , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Dexamethasone/administration & dosage , Drug Resistance, Neoplasm , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunomodulation/drug effects , Lenalidomide , Mice, SCID , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Thalidomide/administration & dosage , Thalidomide/analogs & derivatives , Thalidomide/therapeutic use , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/methods
3.
Blood ; 126(6): 779-89, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26002965

ABSTRACT

Cereblon (CRBN), a substrate receptor of the Cullin 4 RING E3 ubiquitin ligase complex, is the target of the immunomodulatory drugs lenalidomide and pomalidomide. Recently, it was demonstrated that binding of these drugs to CRBN promotes the ubiquitination and subsequent degradation of 2 common substrates, transcription factors Aiolos and Ikaros. Here we report that CC-122, a new chemical entity termed pleiotropic pathway modifier, binds CRBN and promotes degradation of Aiolos and Ikaros in diffuse large B-cell lymphoma (DLBCL) and T cells in vitro, in vivo, and in patients, resulting in both cell autonomous as well as immunostimulatory effects. In DLBCL cell lines, CC-122-induced degradation or short hairpin RNA-mediated knockdown of Aiolos and Ikaros correlates with increased transcription of interferon (IFN)-stimulated genes independent of IFN-α, -ß, and -γ production and/or secretion and results in apoptosis in both activated B-cell (ABC) and germinal center B-cell DLBCL cell lines. Our results provide mechanistic insight into the cell-of-origin independent antilymphoma activity of CC-122, in contrast to the ABC subtype selective activity of lenalidomide.


Subject(s)
Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Ikaros Transcription Factor/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Peptide Hydrolases/genetics , Piperidones/pharmacology , Quinazolinones/pharmacology , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing , Animals , Antineoplastic Agents/chemistry , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Ikaros Transcription Factor/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferons/genetics , Interferons/metabolism , Lenalidomide , Lentivirus/genetics , Lentivirus/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Mice, SCID , Molecular Mimicry , Peptide Hydrolases/metabolism , Piperidones/chemistry , Proteolysis/drug effects , Quinazolinones/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Ubiquitin-Protein Ligases , Xenograft Model Antitumor Assays
4.
Nat Struct Mol Biol ; 21(9): 803-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25108355

ABSTRACT

The Cul4-Rbx1-DDB1-Cereblon E3 ubiquitin ligase complex is the target of thalidomide, lenalidomide and pomalidomide, therapeutically important drugs for multiple myeloma and other B-cell malignancies. These drugs directly bind Cereblon (CRBN) and promote the recruitment of substrates Ikaros (IKZF1) and Aiolos (IKZF3) to the E3 complex, thus leading to substrate ubiquitination and degradation. Here we present the crystal structure of human CRBN bound to DDB1 and the drug lenalidomide. A hydrophobic pocket in the thalidomide-binding domain (TBD) of CRBN accommodates the glutarimide moiety of lenalidomide, whereas the isoindolinone ring is exposed to solvent. We also solved the structures of the mouse TBD in the apo state and with thalidomide or pomalidomide. Site-directed mutagenesis in lentiviral-expression myeloma models showed that key drug-binding residues are critical for antiproliferative effects.


Subject(s)
Angiogenesis Inhibitors/pharmacology , DNA-Binding Proteins/metabolism , Peptide Hydrolases/metabolism , Thalidomide/analogs & derivatives , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Angiogenesis Inhibitors/chemistry , Animals , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Humans , Lenalidomide , Mice , Molecular Docking Simulation , Molecular Sequence Data , Peptide Hydrolases/chemistry , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Sequence Alignment , Thalidomide/chemistry , Thalidomide/pharmacology , Ubiquitin-Protein Ligases
5.
Br J Haematol ; 164(2): 233-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24206017

ABSTRACT

Cereblon, a member of the cullin 4 ring ligase complex (CRL4), is the molecular target of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide and is required for the antiproliferative activity of these agents in multiple myeloma (MM) and immunomodulatory activity in T cells. Cereblon's central role as a target of lenalidomide and pomalidomide suggests potential utility as a predictive biomarker of response or resistance to IMiD therapy. Our studies characterized a cereblon monoclonal antibody CRBN65, with high sensitivity and specificity in Western analysis and immunohistochemistry that is superior to commercially available antibodies. We identified multiple cereblon splice variants in both MM cell lines and primary cells, highlighting challenges with conventional gene expression assays given this gene complexity. Using CRBN65 antibody and TaqMan quantitative reverse transcription polymerase chain reaction assays, we showed lack of correlation between cereblon protein and mRNA levels. Furthermore, lack of correlation between cereblon expression in MM cell lines and sensitivity to lenalidomide was shown. In cell lines made resistant to lenalidomide and pomalidomide, cereblon protein is greatly reduced. These studies show limitations to the current approaches of cereblon measurement that rely on commercial reagents and assays. Standardized reagents and validated assays are needed to accurately assess the role of cereblon as a predictive biomarker.


Subject(s)
Drug Resistance, Neoplasm/genetics , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Adaptor Proteins, Signal Transducing , Alternative Splicing , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Humans , Multiple Myeloma/drug therapy , Peptide Hydrolases/immunology , RNA Isoforms , Thalidomide/therapeutic use , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL
...