Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AAPS PharmSciTech ; 23(7): 274, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207549

ABSTRACT

The present study investigates the physicochemical properties and stability of a novel lipid-based formulation-surfactant-enriched oil marbles containing abiraterone acetate. While the biopharmaceutical performance of this formulation has been reported recently, this study aims to fill the gap between a promising in vivo performance and industrial applicability. A series of techniques were employed to assess the solid-state characteristics of oil marble cores along with their physicochemical properties upon stability testing. The chemical stability of abiraterone acetate in the formulation was also investigated. The core of the formulation was found to be stable both physically and chemically over 12 months of storage. The in vitro performance of stressed samples was evaluated using a dissolution experiment. The formulation has successfully self-emulsified upon incubation in bio-relevant media, resulting in a fast and complete API release. An important issue connected with the excipient used as a covering material of oil marbles has been identified. The seemingly insignificant water sorption caused agglomeration of the oil marbles and consequently compromised the dissolution rate in some of the stressed samples. Replacing HPMC with lactose as a covering material resulted in more favorable properties upon storage. Overall, it has been shown that oil marbles are an industrially applicable concept of the solidified lipid-based formulation.


Subject(s)
Biological Products , Excipients , Abiraterone Acetate , Calcium Carbonate , Chemistry, Pharmaceutical/methods , Drug Stability , Excipients/chemistry , Lactose , Lipids/chemistry , Solubility , Surface-Active Agents/chemistry , Water
2.
AAPS J ; 22(6): 122, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32978690

ABSTRACT

Abiraterone acetate has limited bioavailability in the fasted state and exhibits a strong positive food effect. We present a novel formulation concept based on the so-called oil marbles (OMs) and show by in vitro and in vivo experiments that the food effect can be suppressed. OMs are spherical particles with a core-shell structure, formed by coating oil-based droplets that contain the dissolved drug by a layer of powder that prevents the cores from sticking and coalescence. OMs prepared in this work contained abiraterone acetate in the amorphous form and showed enhanced dissolution properties during in vitro experiments when compared with originally marketed formulation of abiraterone acetate (Zytiga®). Based on in vitro comparison of OMs containing different oil/surfactant combinations, the most promising formulation was chosen for in vivo studies. To ensure relevance, it was verified that the food effect previously reported for Zytiga® in humans was translated into the rat animal model. The bioavailability of abiraterone acetate formulated in OMs in the fasted state was then found to be enhanced by a factor of 2.7 in terms of AUC and by a factor of 4.0 in terms of Cmax. Crucially, the food effect reported in the literature for other abiraterone acetate formulations was successfully eliminated and OMs showed comparable extent of bioavailability in a fed-fasted study. Oil marbles therefore seem to be a promising formulation concept not only for abiraterone acetate but potentially also for other poorly soluble drugs that reveal a positive food effect.


Subject(s)
Abiraterone Acetate/pharmacokinetics , Drug Compounding/methods , Pharmaceutical Vehicles/chemistry , Abiraterone Acetate/administration & dosage , Abiraterone Acetate/chemistry , Administration, Oral , Animals , Area Under Curve , Biological Availability , Drug Liberation , Fasting/physiology , Food-Drug Interactions , Male , Models, Animal , Oils/chemistry , Postprandial Period/physiology , Rats , Surface-Active Agents/chemistry
3.
J Pharm Sci ; 108(6): 2136-2142, 2019 06.
Article in English | MEDLINE | ID: mdl-30721711

ABSTRACT

Many new therapeutic candidates and active pharmaceutical ingredients (APIs) are poorly soluble in an aqueous environment, resulting in their reduced bioavailability. A promising way of enhancing the release of an API and, thus, its bioavailability seems to be the use of liquid oil marbles (LOMs). An LOM system behaves as a solid form but consists of an oil droplet in which an already dissolved API is encapsulated by a powder. This study aims to optimize the oil/powder combination for the development of such systems. LOMs were successfully prepared for 15 oil/powder combinations, and the following properties were investigated: particle mass fraction, dissolution time, and mechanical stability. Furthermore, the release of API from both LOMs and LOMs encapsulated into gelatine capsules was studied.


Subject(s)
Drug Carriers/chemistry , Drug Compounding/methods , Oils/chemistry , Water/chemistry , Biological Availability , Capsules , Chemistry, Pharmaceutical , Drug Liberation , Drug Stability , Gelatin/chemistry , Powders , Solubility , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...