Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Soft Matter ; 14(13): 2560-2566, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29561034

ABSTRACT

The control of structure formation in the active layers of organic solar cells allows for improvement in their processability and enhancement of the efficiency of the final devices. In the present work, in situ studies of film formation from binary toluene solutions of an electron donor, poly(3-hexylthiophene) (P3HT), and an electron acceptor such as [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) or indene-C60 bisadduct (ICBA) have been conducted. These experiments were carried out using GIWAXS with simultaneous electric current measurements. The comparative analysis of the intensity of the amorphous halo, and the 100 and 020 peaks of P3HT reveals the development of the semicrystalline morphology of the donor through a partly-ordered phase. The experiments show the impact of the chemical structure of the acceptor, as well as that of the donor : acceptor ratio on the kinetics of drying and crystallization. The optimal bulk heterojunction morphology was achieved for P3HT : ICBA 1 : 1, which exhibited the highest value of current. A more efficient phase separation in non-annealed P3HT:ICBA films as compared to P3HT:PCBM was accounted for by the differences in solubility of the components in toluene. The structure formation during solvent evaporation can be subdivided into three stages, including the ordering of the polymer in solution, phase separation during precipitation, and the perfectioning of P3HT crystals in the dry film.

2.
Mol Biol (Mosk) ; 37(2): 228-33, 2003.
Article in Russian | MEDLINE | ID: mdl-12723470

ABSTRACT

Intrachromosomal and interchromosomal segmental duplications account for more than 5% of the human genome. To analyze the processes resulting in the complex mosaic structure of duplicons, a draft human genome sequence was searched for duplicated segments of a genomic fragment of the pericentric region of the chromosome 21 short arm. The duplicons found consist of modules having paralogs in various genome regions. Module ends are flanked with various tandem or interspersed repeats, which are more unstable as compared with unique sequences. In most cases, the boundaries of duplicated segments exactly coincide with or are in close proximity to hot spots of various rearrangements within repeats or boundaries between repeats and unique sequences or between two different repeats. Homologous recombination between repetitive elements was assumed to be the major mechanism contributing to the mosaic structure of duplicons.


Subject(s)
Gene Duplication , Genome, Human , Interspersed Repetitive Sequences , Mosaicism , Tandem Repeat Sequences , Chromosomes, Human, Pair 21 , Humans , Recombination, Genetic , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...