Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 3357, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336906

ABSTRACT

Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.


Subject(s)
Drosophila , Epilepsy , Potassium Channels, Sodium-Activated , Animals , Humans , Drosophila/genetics , Drosophila melanogaster/genetics , Drug Evaluation, Preclinical , Epilepsy/drug therapy , Epilepsy/genetics , Models, Animal , Mutation , Nerve Tissue Proteins/genetics , Potassium Channels, Sodium-Activated/genetics , Seizures/drug therapy , Seizures/genetics , Transgenes
2.
J Comp Neurol ; 532(2): e25546, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37837642

ABSTRACT

The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.


Subject(s)
Colorectal Neoplasms , Vagus Nerve , Mice , Animals , Afferent Pathways/physiology , Neurons , Spinal Cord Dorsal Horn , Colorectal Neoplasms/metabolism , Spinal Cord/metabolism , Neurons, Afferent/physiology
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499459

ABSTRACT

KCNT1 (K+ channel subfamily T member 1) is a sodium-activated potassium channel highly expressed in the nervous system which regulates neuronal excitability by contributing to the resting membrane potential and hyperpolarisation following a train of action potentials. Gain of function mutations in the KCNT1 gene are the cause of neurological disorders associated with different forms of epilepsy. To gain insights into the underlying pathobiology we investigated the functional effects of 9 recently published KCNT1 mutations, 4 previously studied KCNT1 mutations, and one previously unpublished KCNT1 variant of unknown significance. We analysed the properties of KCNT1 potassium currents and attempted to find a correlation between the changes in KCNT1 characteristics due to the mutations and severity of the neurological disorder they cause. KCNT1 mutations identified in patients with epilepsy were introduced into the full length human KCNT1 cDNA using quick-change site-directed mutagenesis protocol. Electrophysiological properties of different KCNT1 constructs were investigated using a heterologous expression system (HEK293T cells) and patch clamping. All mutations studied, except T314A, increased the amplitude of KCNT1 currents, and some mutations shifted the voltage dependence of KCNT1 open probability, increasing the proportion of channels open at the resting membrane potential. The T314A mutation did not affect KCNT1 current amplitude but abolished its voltage dependence. We observed a positive correlation between the severity of the neurological disorder and the KCNT1 channel open probability at resting membrane potential. This suggests that gain of function KCNT1 mutations cause epilepsy by increasing resting potassium conductance and suppressing the activity of inhibitory neurons. A reduction in action potential firing in inhibitory neurons due to excessively high resting potassium conductance leads to disinhibition of neural circuits, hyperexcitability and seizures.


Subject(s)
Epilepsy , Nerve Tissue Proteins , Humans , Potassium Channels, Sodium-Activated/genetics , HEK293 Cells , Nerve Tissue Proteins/metabolism , Epilepsy/genetics , Mutation , Potassium/metabolism
4.
Cell Mol Life Sci ; 79(3): 167, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35233680

ABSTRACT

The cellular defense mechanisms against cumulative endo-lysosomal stress remain incompletely understood. Here, we identify Ubr1 as a protein quality control (QC) E3 ubiquitin-ligase that counteracts proteostasis stresses by facilitating endosomal cargo-selective autophagy for lysosomal degradation. Astrocyte regulatory cluster membrane protein MLC1 mutations cause endosomal compartment stress by fusion and enlargement. Partial lysosomal clearance of mutant endosomal MLC1 is accomplished by the endosomal QC ubiquitin ligases, CHIP and Ubr1 via ESCRT-dependent route. As a consequence of the endosomal stress, a supportive QC mechanism, dependent on both Ubr1 and SQSTM1/p62 activities, targets ubiquitinated and arginylated MLC1 mutants for selective endosomal autophagy (endophagy). This QC pathway is also activated for arginylated Ubr1-SQSTM1/p62 autophagy cargoes during cytosolic Ca2+-assault. Conversely, the loss of Ubr1 and/or arginylation elicited endosomal compartment stress. These findings underscore the critical housekeeping role of Ubr1 and arginylation-dependent endophagy/autophagy during endo-lysosomal proteostasis perturbations and suggest a link of Ubr1 to Ca2+ homeostasis and proteins implicated in various diseases including cancers and brain disorders.


Subject(s)
Autophagy/physiology , Calcium/metabolism , Endosomes/metabolism , Proteostasis/physiology , Ubiquitin-Protein Ligases/metabolism , Animals , Arginine/metabolism , CHO Cells , Cell Line, Tumor , Cricetulus , HeLa Cells , Humans , Lysosomes/metabolism , Proteolysis , Signal Transduction/physiology , Ubiquitin/metabolism
5.
Int J Mol Sci ; 23(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35163660

ABSTRACT

Induced neural stem cells (iNSCs) reprogrammed from somatic cells hold great potentials for drug discovery, disease modelling and the treatment of neurological diseases. Although studies have shown that human somatic cells can be converted into iNSCs by introducing transcription factors, these iNSCs are unlikely to be used for clinical application due to the safety concern of using exogenous genes and viral transduction vectors. Here, we report the successful conversion of human fibroblasts into iNSCs using a cocktail of small molecules. Furthermore, our results demonstrate that these human iNSCs (hiNSCs) have similar gene expression profiles to bona fide NSCs, can proliferate, and are capable of differentiating into glial cells and functional neurons. This study collectively describes a novel approach based on small molecules to produce hiNSCs from human fibroblasts, which may be useful for both research and therapeutic purposes.


Subject(s)
Cell Differentiation , Fibroblasts/cytology , Neural Stem Cells/cytology , Small Molecule Libraries/pharmacology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Down-Regulation/drug effects , Down-Regulation/genetics , Electrophysiological Phenomena , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Mice , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
6.
J Physiol ; 600(3): 623-643, 2022 02.
Article in English | MEDLINE | ID: mdl-34877682

ABSTRACT

Three Orai (Orai1, Orai2, and Orai3) and two stromal interaction molecule (STIM1 and STIM2) mammalian protein homologues constitute major components of the store-operated Ca2+ entry mechanism. When co-expressed with STIM1, Orai1, Orai2 and Orai3 form highly selective Ca2+ channels with properties of Ca2+ release-activated Ca2+ (CRAC) channels. Despite the high level of homology between Orai proteins, CRAC channels formed by different Orai isoforms have distinctive properties, particularly with regards to Ca2+ -dependent inactivation, inhibition/potentiation by 2-aminoethyl diphenylborinate and sensitivity to reactive oxygen species. This study characterises and compares the regulation of Orai1, Orai2- and Orai3-mediated CRAC current (ICRAC ) by intracellular pH (pHi ). Using whole-cell patch clamping of HEK293T cells heterologously expressing Orai and STIM1, we show that ICRAC formed by each Orai homologue has a unique sensitivity to changes in pHi . Orai1-mediated ICRAC exhibits a strong dependence on pHi of both current amplitude and the kinetics of Ca2+ -dependent inactivation. In contrast, Orai2 amplitude, but not kinetics, depends on pHi , whereas Orai3 shows no dependence on pHi at all. Investigation of different Orai1-Orai3 chimeras suggests that pHi dependence of Orai1 resides in both the N-terminus and intracellular loop 2, and may also involve pH-dependent interactions with STIM1. KEY POINTS: It has been shown previously that Orai1/stromal interaction molecule 1 (STIM1)-mediated Ca2+ release-activated Ca2+ current (ICRAC ) is inhibited by intracellular acidification and potentiated by intracellular alkalinisation. The present study reveals that CRAC channels formed by each of the Orai homologues Orai1, Orai2 and Orai3 has a unique sensitivity to changes in intracellular pH (pHi ). The amplitude of Orai2 current is affected by the changes in pHi  similarly to the amplitude of Orai1. However, unlike Orai1, fast Ca2+ -dependent inactivation of Orai2 is unaffected by acidic pHi . In contrast to both Orai1 and Orai2, Orai3 is not sensitive to pHi  changes. Domain swapping between Orai1 and Orai3 identified the N-terminus and intracellular loop 2 as the molecular structures responsible for Orai1 regulation by pHi . Reduction of ICRAC dependence on pHi seen in a STIM1-independent Orai1 mutant suggested that some parts of STIM1 are also involved in ICRAC modulation by pHi .


Subject(s)
Calcium Channels , Calcium Release Activated Calcium Channels , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , HEK293 Cells , Humans , Hydrogen-Ion Concentration , ORAI1 Protein/genetics , ORAI2 Protein/metabolism , Stromal Interaction Molecule 1/metabolism
7.
Antioxidants (Basel) ; 10(8)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34439491

ABSTRACT

TRPM2 channels admit Ca2+ and Na+ across the plasma membrane and release Ca2+ and Zn2+ from lysosomes. Channel activation is initiated by reactive oxygen species (ROS), leading to a subsequent increase in ADP-ribose and the binding of ADP-ribose to an allosteric site in the cytosolic NUDT9 homology domain. In many animal cell types, Ca2+ entry via TRPM2 channels mediates ROS-initiated cell injury and death. The aim of this review is to summarise the current knowledge of the roles of TRPM2 and Ca2+ in the initiation and progression of chronic liver diseases and acute liver injury. Studies to date provide evidence that TRPM2-mediated Ca2+ entry contributes to drug-induced liver toxicity, ischemia-reperfusion injury, and the progression of non-alcoholic fatty liver disease to cirrhosis, fibrosis, and hepatocellular carcinoma. Of particular current interest are the steps involved in the activation of TRPM2 in hepatocytes following an increase in ROS, the downstream pathways activated by the resultant increase in intracellular Ca2+, and the chronology of these events. An apparent contradiction exists between these roles of TRPM2 and the role identified for ROS-activated TRPM2 in heart muscle and in some other cell types in promoting Ca2+-activated mitochondrial ATP synthesis and cell survival. Inhibition of TRPM2 by curcumin and other "natural" compounds offers an attractive strategy for inhibiting ROS-induced liver cell injury. In conclusion, while it has been established that ROS-initiated activation of TRPM2 contributes to both acute and chronic liver injury, considerable further research is needed to elucidate the mechanisms involved, and the conditions under which pharmacological inhibition of TRPM2 can be an effective clinical strategy to reduce ROS-initiated liver injury.

8.
Cancers (Basel) ; 12(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987945

ABSTRACT

Hepatocellular carcinoma (HCC) is a considerable health burden worldwide and a major contributor to cancer-related deaths. HCC is often not noticed until at an advanced stage where treatment options are limited and current systemic drugs can usually only prolong survival for a short time. Understanding the biology and pathology of HCC is a challenge, due to the cellular and anatomic complexities of the liver. While not yet fully understood, liver cancer stem cells play a central role in the initiation and progression of HCC and in resistance to drugs. There are approximately twenty Ca2+-signaling proteins identified as potential targets for therapeutic treatment at different stages of HCC. These potential targets include inhibition of the self-renewal properties of liver cancer stem cells; HCC initiation and promotion by hepatitis B and C and non-alcoholic fatty liver disease (principally involving reduction of reactive oxygen species); and cell proliferation, tumor growth, migration and metastasis. A few of these Ca2+-signaling pathways have been identified as targets for natural products previously known to reduce HCC. Promising Ca2+-signaling targets include voltage-operated Ca2+ channel proteins (liver cancer stem cells), inositol trisphosphate receptors, store-operated Ca2+ entry, TRP channels, sarco/endoplasmic reticulum (Ca2++Mg2+) ATP-ase and Ca2+/calmodulin-dependent protein kinases. However, none of these Ca2+-signaling targets has been seriously studied any further than laboratory research experiments. The future application of more systematic studies, including genomics, gene expression (RNA-seq), and improved knowledge of the fundamental biology and pathology of HCC will likely reveal new Ca2+-signaling protein targets and consolidate priorities for those already identified.

9.
Mol Biol Rep ; 47(4): 2713-2722, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32185687

ABSTRACT

Neural cell transplantation is an effective way for treatment of neurological diseases. However, the absence of transplantable human neurons remains a barrier for clinical therapies. Human urine-derived cells, namely renal cells and urine stem cells, have become a good source of cells for reprogramming or trans-differentiation research. Here, we show that human urine-derived cells can be partially converted into neuron-like cells by applying a cocktail of small molecules. Gene expression analysis has shown that these induced cells expressed some neuron-specific genes, and a proportion of the cells are GABAergic neurons. Moreover, whole-cell patch clamping recording has shown that some induced cells have neuron-specific voltage gated Na+ and K+ currents but have failed to generate Ca2+ currents and action potentials. Taken together, these results suggest that induced neuronal cells from human urine-derived cells may be useful for neurological disease modelling, drug screening and cell therapies.


Subject(s)
Cell Culture Techniques/methods , Neural Stem Cells/cytology , Neurons/metabolism , Urine/cytology , Action Potentials/drug effects , Adult , Cell Differentiation/drug effects , Cells, Cultured/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Male , Middle Aged , Neural Stem Cells/metabolism , Neurons/pathology , Patch-Clamp Techniques
10.
Cell Calcium ; 82: 102057, 2019 09.
Article in English | MEDLINE | ID: mdl-31401389

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in men, and the sixth in women. Non-alcoholic fatty liver disease (NAFLD) is now one of the major risk factors for HCC. NAFLD, which involves the accumulation of excess lipid in cytoplasmic lipid droplets in hepatocytes, can progress to non-alcoholic steatosis, fibrosis, and HCC. Changes in intracellular Ca2+ constitute important signaling pathways for the regulation of lipid and carbohydrate metabolism in normal hepatocytes. Recent studies of steatotic hepatocytes have identified lipid-induced changes in intracellular Ca2+, and have provided evidence that altered Ca2+ signaling exacerbates lipid accumulation and may promote HCC. The aims of this review are to summarise current knowledge of the lipid-induced changes in hepatocyte Ca2+ homeostasis, to comment on the mechanisms involved, and discuss the pathways leading from altered Ca2+ homeostasis to enhanced lipid accumulation and the potential promotion of HCC. In steatotic hepatocytes, lipid inhibits store-operated Ca2+ entry and SERCA2b, and activates Ca2+ efflux from the endoplasmic reticulum (ER) and its transfer to mitochondria. These changes are associated with changes in Ca2+ concentrations in the ER (decreased), cytoplasmic space (increased) and mitochondria (likely increased). They lead to: inhibition of lipolysis, lipid autophagy, lipid oxidation, and lipid secretion; activation of lipogenesis; increased lipid; ER stress, generation of reactive oxygen species (ROS), activation of Ca2+/calmodulin-dependent kinases and activation of transcription factor Nrf2. These all can potentially mediate the transition of NAFLD to HCC. It is concluded that lipid-induced changes in hepatocyte Ca2+ homeostasis are important in the initiation and progression of HCC. Further research is desirable to better understand the cause and effect relationships, the time courses and mechanisms involved, and the potential of Ca2+ transporters, channels, and binding proteins as targets for pharmacological intervention.


Subject(s)
Calcium Signaling/physiology , Carcinoma, Hepatocellular/metabolism , Hepatocytes/metabolism , Liver Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Hepatocytes/pathology , Homeostasis , Humans , Intracellular Space , Lipid Metabolism , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/pathology
11.
JCI Insight ; 3(19)2018 10 04.
Article in English | MEDLINE | ID: mdl-30282832

ABSTRACT

Irritable bowel syndrome (IBS) patients suffer from chronic abdominal pain and extraintestinal comorbidities, including overactive bladder (OAB) and interstitial cystitis/painful bladder syndrome (IC-PBS). Mechanistic understanding of the cause and time course of these comorbid symptoms is lacking, as are clinical treatments. Here, we report that colitis triggers hypersensitivity of colonic afferents, neuroplasticity of spinal cord circuits, and chronic abdominal pain, which persists after inflammation. Subsequently, and in the absence of bladder pathology, colonic hypersensitivity induces persistent hypersensitivity of bladder afferent pathways, resulting in bladder-voiding dysfunction, indicative of OAB/IC-PBS. Daily administration of linaclotide, a guanylate cyclase-C (GC-C) agonist that is restricted to and acts within the gastrointestinal tract, reverses colonic afferent hypersensitivity, reverses neuroplasticity-induced alterations in spinal circuitry, and alleviates chronic abdominal pain in mice. Intriguingly, daily linaclotide administration also reverses persistent bladder afferent hypersensitivity to mechanical and chemical stimuli and restores normal bladder voiding. Linaclotide itself does not inhibit bladder afferents, rather normalization of bladder function by daily linaclotide treatment occurs via indirect inhibition of bladder afferents via reduced nociceptive signaling from the colon. These data support the concepts that cross-organ sensitization underlies the development and maintenance of visceral comorbidities, while pharmaceutical treatments that inhibit colonic afferents may also improve urological symptoms through common sensory pathways.


Subject(s)
Guanylyl Cyclase C Agonists/administration & dosage , Hyperalgesia/drug therapy , Irritable Bowel Syndrome/drug therapy , Neuronal Plasticity/drug effects , Peptides/administration & dosage , Urinary Bladder, Overactive/drug therapy , Afferent Pathways/drug effects , Animals , Colitis/chemically induced , Colon/drug effects , Colon/innervation , Disease Models, Animal , Drug Administration Schedule , Humans , Hyperalgesia/chemically induced , Hyperalgesia/complications , Irritable Bowel Syndrome/chemically induced , Irritable Bowel Syndrome/complications , Male , Mice , Nociception/drug effects , Treatment Outcome , Trinitrobenzenesulfonic Acid/toxicity , Urinary Bladder/innervation , Urinary Bladder, Overactive/etiology
12.
Methods Mol Biol ; 1843: 167-173, 2018.
Article in English | MEDLINE | ID: mdl-30203286

ABSTRACT

Fast Ca2+-dependent inactivation (FCDI) is a safety mechanism limiting Ca2+ entry through some types of Ca2+ channels, including Ca2+ release-activated Ca2+ (CRAC) channels. This type of inactivation is caused by Ca2+, which passes through Ca2+ channel and binds to a specific site within a short distance from the inner mouth of the pore, causing channel to shut.The main technique that is used to investigate FCDI is whole-cell patch clamping. Since the cloning of the molecular components of the CRAC channel, STIM1 and Orai1, FCDI of CRAC channel has been studied using HEK293T heterologous expression system. In this paper we describe a method of quantifying CRAC channel FCDI by using instantaneous tail currents.


Subject(s)
Calcium Release Activated Calcium Channels/metabolism , Calcium/metabolism , Ion Channel Gating , Calcium Release Activated Calcium Channels/genetics , DNA, Complementary , Data Analysis , Gene Expression , HEK293 Cells , Humans , Patch-Clamp Techniques , Transfection
13.
Biochem Biophys Res Commun ; 503(3): 1891-1896, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30075844

ABSTRACT

Transient Receptor Potential Melastatin (TRPM) 2 is a non-selective Ca2+ permeable cation channel and a member of the Transient Receptor Potential (TRP) channel family. TRPM2 has unique gating properties; it is activated by intracellular ADP-ribose (ADPR), whereas Ca2+ plays a role of an important co-factor in channel activation, increasing TRPM2 sensitivity to ADPR. TRPM2 is highly expressed in rat and mouse hepatocytes, where it has been shown to contribute to oxidative stress-induced cell death and liver damage due to paracetamol-overdose. The mechanisms regulating the activity of TRPM2 channels in hepatocytes, however, are not well understood. In this paper, we investigate the localisation of TRPM2 protein in hepatocytes. The presented results demonstrate that in rat hepatocytes under normal conditions, most of the TRPM2 protein is localised intracellularly. This was determined by confocal microscopy using TRPM2-and plasma membrane (PM)-specific antibodies and immunofluorescence, and biotinylation studies followed by western blotting. Interestingly, in hepatocytes treated with either H2O2 or paracetamol, the amount of TRPM2 co-localised with PM is significantly increased, compared to the untreated cells. It is concluded that trafficking of TRPM2 to the PM could potentially contribute to a positive feedback mechanism mediating Ca2+ overload in hepatocytes under conditions of oxidative stress.


Subject(s)
Cell Membrane/metabolism , Hepatocytes/metabolism , Oxidative Stress , TRPM Cation Channels/metabolism , Acetaminophen/pharmacology , Animals , Calcium/metabolism , Cells, Cultured , Hepatocytes/drug effects , Hydrogen Peroxide/pharmacology , Male , Rats , Rats, Wistar
14.
Pain ; 159(12): 2573-2584, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30157135

ABSTRACT

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a prevalent, chronic bladder disorder that negatively impacts the quality of life for ∼5% of the western population. Hypersensitivity of mechanosensory afferents embedded within the bladder wall is considered a key component in mediating IC/BPS symptoms. Bladder infusion of voltage-gated sodium (Nav) channel blockers show clinical efficacy in treating IC/BPS symptoms; however, the current repertoire of Nav channels expressed by and contributing to bladder afferent function is unknown. We used single-cell reverse-transcription polymerase chain reaction of retrogradely traced bladder-innervating dorsal root ganglia (DRG) neurons to determine the expression profile of Nav channels, and patch-clamp recordings to characterise the contribution of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Nav channels to total sodium current and neuronal excitability. We determined the TTX-S and TTX-R contribution to mechanosensitive bladder afferent responses ex vivo and spinal dorsal horn activation in vivo. Single-cell reverse-transcription polymerase chain reaction of bladder-innervating DRG neurons revealed significant heterogeneity in Nav channel coexpression patterns. However, TTX-S Nav channels contribute the vast majority of the total sodium current density and regulate the neuronal excitability of bladder DRG neurons. Furthermore, TTX-S Nav channels mediate almost all bladder afferent responses to distension. In vivo intrabladder infusion of TTX significantly reduces activation of dorsal horn neurons within the spinal cord to bladder distension. These data provide the first comprehensive analysis of Nav channel expression within sensory afferents innervating the bladder. They also demonstrate an essential role for TTX-S Nav channel regulation of bladder-innervating DRG neuroexcitability, bladder afferent responses to distension, and nociceptive signalling to the spinal cord.


Subject(s)
Neurons, Afferent/physiology , Urinary Bladder/drug effects , Urinary Bladder/physiology , Voltage-Gated Sodium Channels/metabolism , Action Potentials/drug effects , Afferent Pathways/drug effects , Afferent Pathways/physiology , Animals , Calcium/metabolism , Cholera Toxin/metabolism , Electric Stimulation , Female , Ganglia, Spinal/cytology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , RNA, Messenger , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Voltage-Gated Sodium Channels/genetics
15.
JCI Insight ; 3(11)2018 06 07.
Article in English | MEDLINE | ID: mdl-29875317

ABSTRACT

Functional bowel disorder patients can suffer from chronic abdominal pain, likely due to visceral hypersensitivity to mechanical stimuli. As there is only a limited understanding of the basis of chronic visceral hypersensitivity (CVH), drug-based management strategies are ill defined, vary considerably, and include NSAIDs, opioids, and even anticonvulsants. We previously reported that the 1.1 subtype of the voltage-gated sodium (NaV; NaV1.1) channel family regulates the excitability of sensory nerve fibers that transmit a mechanical pain message to the spinal cord. Herein, we investigated whether this channel subtype also underlies the abdominal pain that occurs with CVH. We demonstrate that NaV1.1 is functionally upregulated under CVH conditions and that inhibiting channel function reduces mechanical pain in 3 mechanistically distinct mouse models of chronic pain. In particular, we use a small molecule to show that selective NaV1.1 inhibition (a) decreases sodium currents in colon-innervating dorsal root ganglion neurons, (b) reduces colonic nociceptor mechanical responses, and (c) normalizes the enhanced visceromotor response to distension observed in 2 mouse models of irritable bowel syndrome. These results provide support for a relationship between NaV1.1 and chronic abdominal pain associated with functional bowel disorders.


Subject(s)
Chronic Pain/drug therapy , Colon/drug effects , Irritable Bowel Syndrome/complications , Visceral Pain/drug therapy , Voltage-Gated Sodium Channel Blockers/administration & dosage , Animals , Chronic Pain/diagnosis , Chronic Pain/etiology , Chronic Pain/pathology , Colon/innervation , Colon/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Stability , Ganglia, Spinal/cytology , Humans , Irritable Bowel Syndrome/chemically induced , Irritable Bowel Syndrome/pathology , Male , Maximum Tolerated Dose , Mice , NAV1.1 Voltage-Gated Sodium Channel/metabolism , Nociceptors/drug effects , Nociceptors/metabolism , Pain Measurement , Trinitrobenzenesulfonic Acid/administration & dosage , Trinitrobenzenesulfonic Acid/toxicity , Visceral Pain/diagnosis , Visceral Pain/etiology , Visceral Pain/pathology
16.
Br J Pharmacol ; 175(12): 2384-2398, 2018 06.
Article in English | MEDLINE | ID: mdl-29194563

ABSTRACT

BACKGROUND AND PURPOSE: Patients with irritable bowel syndrome suffer from chronic visceral pain (CVP) and limited analgesic therapeutic options are currently available. We have shown that α-conotoxin Vc1.1 induced activation of GABAB receptors on the peripheral endings of colonic afferents and reduced nociceptive signalling from the viscera. However, the analgesic efficacy of more stable, cyclized versions of Vc1.1 on CVP remains to be determined. EXPERIMENTAL APPROACH: Using ex vivo colonic afferent preparations from mice, we determined the inhibitory actions of cyclized Vc1.1 (cVc1.1) and two cVc1.1 analogues on mouse colonic nociceptors in healthy and chronic visceral hypersensitivity (CVH) states. Using whole-cell patch clamp recordings, we also assessed the inhibitory actions of these peptides on the neuronal excitability of colonic innervating dorsal root ganglion neurons. In vivo, the analgesic efficacy of these analogues was assessed by determining the visceromotor response to colorectal distension in healthy and CVH mice. KEY RESULTS: cVc1.1 and the cVc1.1 analogues, [C2H,C8F]cVc1.1 and [N9W]cVc1.1, all caused concentration-dependent inhibition of colonic nociceptors from healthy mice. Inhibition by these peptides was greater than those evoked by linear Vc1.1 and was substantially greater in colonic nociceptors from CVH mice. cVc1.1 also reduced excitability of colonic dorsal root ganglion neurons, with greater effect in CVH neurons. CVH mice treated with cVc1.1 intra-colonically displayed reduced pain responses to noxious colorectal distension compared with vehicle-treated CVH mice. CONCLUSIONS AND IMPLICATIONS: Cyclic versions of Vc1.1 evoked significant anti-nociceptive actions in CVH states, suggesting that they could be novel candidates for treatment of CVP. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Subject(s)
Abdominal Pain/drug therapy , Analgesia , Colon/drug effects , Conotoxins/chemistry , Conotoxins/pharmacology , Disease Models, Animal , Nociceptors/drug effects , Animals , Cells, Cultured , Chronic Disease , Male , Mice , Mice, Inbred C57BL
17.
Adv Exp Med Biol ; 993: 595-621, 2017.
Article in English | MEDLINE | ID: mdl-28900935

ABSTRACT

In steatotic hepatocytes, intracellular Ca2+ homeostasis is substantially altered compared to normal. Decreased Ca2+ in the endoplasmic reticulum (ER) can lead to ER stress, an important mediator of the progression of liver steatosis to nonalcoholic steatohepatitis, type 2 diabetes, and hepatocellular carcinoma. Store-operated Ca2+ channels (SOCs) in hepatocytes are composed principally of Orai1 and STIM1 proteins. Their main role is the maintenance of adequate Ca2+ in the lumen of the ER. In steatotic hepatocytes, store-operated Ca2+ entry (SOCE) is substantially inhibited. This inhibition is associated with a decrease in Ca2+ in the ER. Lipid-induced inhibition of SOCE is mediated by protein kinase C (PKC) and may involve the phosphorylation and subsequent inhibition of Orai1. Experimental inhibition of SOCE enhances lipid accumulation in normal hepatocytes incubated in the presence of exogenous fatty acids. The antidiabetic drug exendin-4 reverses the lipid-induced inhibition of SOCE and decreases liver lipid with rapid onset. It is proposed that lipid-induced inhibition of SOCE in the plasma membrane and of SERCA2b in the ER membrane leads to a persistent decrease in ER Ca2+, ER stress, and the ER stress response, which in turn enhances (amplifies) lipid accumulation. A low level of persistent SOCE due to chronic ER Ca2+ depletion in steatotic hepatocytes may contribute to an elevated cytoplasmic-free Ca2+ concentration leading to the activation of calcium-calmodulin kinase II (CaMKII), decreased lipid removal by autophagy, and insulin resistance. It is concluded that lipid-induced inhibition of SOCE plays an important role in the progression of liver steatosis to insulin insensitivity and hepatocellular carcinoma.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Hepatocytes/metabolism , Metabolic Diseases/metabolism , Neoplasms/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans
18.
Pharmaceuticals (Basel) ; 10(2)2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28346371

ABSTRACT

Two transient receptor potential (TRP) channels-TRPA1 and TRPV3-are post-translationally hydroxylated, resulting in oxygen-dependent regulation of channel activity. The enzymes responsible are the HIF prolyl hydroxylases (PHDs) and the asparaginyl hydroxylase factor inhibiting HIF (FIH). The PHDs and FIH are well characterized for their hydroxylation of the hypoxic inducible transcription factors (HIFs), mediating their hypoxic regulation. Consequently, these hydroxylases are currently being targeted therapeutically to modulate HIF activity in anemia, inflammation, and ischemic disease. Modulating the HIFs by targeting these hydroxylases may result in both desirable and undesirable effects on TRP channel activity, depending on the physiological context. For the best outcomes, these hydroxylases could be therapeutically targeted in pathologies where activation of both the HIFs and the relevant TRP channels are predicted to independently achieve positive outcomes, such as wound healing and obesity.

19.
Sci Rep ; 7: 42810, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225079

ABSTRACT

Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1-1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation.


Subject(s)
Action Potentials/drug effects , Ciguatoxins/toxicity , Ganglia, Spinal/drug effects , Voltage-Gated Sodium Channels/metabolism , Animals , Cells, Cultured , Ganglia, Spinal/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Mice , Protein Isoforms/metabolism
20.
Int J Pharm ; 513(1-2): 270-279, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27633281

ABSTRACT

In recent years G protein-coupled receptors (GPCRs) have emerged as crucial tumorigenic factors that drive aberrant cancer growth, metastasis and angiogenesis. Consequently, a number of GPCRs are strongly expressed in cancer derived cell lines and tissue samples. Therefore a rational anti-cancer strategy is the design of nano-medicines that specifically target GPCRs to bind and internalise cytotoxic drugs into cancer cells. Herein, we report the genetic engineering of a self-assembling nanoparticle based on elastin-like polypeptide (ELP), which has been fused with gastrin releasing peptide (GRP). These nanoparticles increased intracellular calcium concentrations when added to GRP receptor positive PC-3 prostate cancer cells, demonstrating specific receptor activation. Moreover, GRP-displaying fluorescent labelled nanoparticles showed specific cell-surface interaction with PC-3 prostate cancer cells and increased endocytic uptake. These nanoparticles therefore provide a targeted molecular carrier system for evaluating the delivery of cytotoxic drugs into cancer cells.


Subject(s)
Drug Carriers/administration & dosage , Gastrin-Releasing Peptide/administration & dosage , Micelles , Peptides/administration & dosage , Recombinant Fusion Proteins/administration & dosage , Anilino Naphthalenesulfonates/chemistry , Cell Line, Tumor , Drug Carriers/chemistry , Elastin , Endocytosis , Fluorescent Dyes/chemistry , Gastrin-Releasing Peptide/chemistry , Gastrin-Releasing Peptide/genetics , Genetic Engineering , Humans , Male , Peptides/chemistry , Peptides/genetics , Prostatic Neoplasms/metabolism , Receptors, Bombesin/metabolism , Recombinant Fusion Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...