Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 16492, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020537

ABSTRACT

Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-ß1-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-ß1-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-ß/Smad2/3 and the antifibrotic TGF-ß/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-ß-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-ß1 was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-ß/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-ß/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-ß/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.


Subject(s)
Asthma/metabolism , Fibroblasts/metabolism , Myofibroblasts/metabolism , Signal Transduction/physiology , Smad Proteins, Receptor-Regulated/metabolism , Transforming Growth Factor beta/metabolism , Adult , Airway Remodeling/physiology , Bronchi/metabolism , Case-Control Studies , Cells, Cultured , Female , Humans , Male , Middle Aged
2.
Oncol Lett ; 16(5): 6582-6588, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30405798

ABSTRACT

Epidemiological data suggests that there are functional links between bronchial asthma and lung carcinogenesis. Bronchial fibroblasts serve a prominent role in the asthmatic process; however, their involvement in lung cancer progression remains unaddressed. To estimate the effect of the asthmatic microenvironment on the invasiveness of lung cancer cells, the present study compared the behavior of human non-small cell lung cancer A549 cells exposed to the signals from human bronchial fibroblasts (HBFs) derived from non-asthmatic donors (NA HBFs) and from asthmatic patients (AS HBFs). NA HBFs did not significantly affect A549 motility, whereas AS HBFs and the media conditioned with AS HBF/A549 co-cultures increased Snail-1/connexin43 expression and motility of A549 cells. In contrast to NA HBFs, which formed A549-impenetrable lateral barriers, α-SMA+ AS HBFs actively infiltrated A549 monolayers and secreted chemotactic factors that arrested A549 cells within AS HBF/A549 contact zone. However, small sub-populations of A549 cells could release from this arrest and colonize distant regions of AS HBF monolayers. These data indicated that the interactions between lung cancer cells and HBFs in asthmatic bronchi may facilitate the colonization of lung tumors by fibroblasts. It further stabilizes the tumor microenvironment and potentially facilitates collective colonization of novel bronchial loci by cancer cells. Potential mechanistic links between the asthmatic process and lung cancer progression suggest that bronchial asthma should be included in the list of potential prognostic markers for lung cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...