Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114187, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722743

ABSTRACT

The locomotor role of dopaminergic neurons is traditionally attributed to their ascending projections to the basal ganglia, which project to the mesencephalic locomotor region (MLR). In addition, descending dopaminergic projections to the MLR are present from basal vertebrates to mammals. However, the neurons targeted in the MLR and their behavioral role are unknown in mammals. Here, we identify genetically defined MLR cells that express D1 or D2 receptors and control different motor behaviors in mice. In the cuneiform nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons stop locomotion. In the pedunculopontine nucleus, D1-expressing neurons promote locomotion, while D2-expressing neurons evoke ipsilateral turns. Using RNAscope, we show that MLR dopamine-sensitive neurons comprise a combination of glutamatergic, GABAergic, and cholinergic neurons, suggesting that different neurotransmitter-based cell types work together to control distinct behavioral modules. Altogether, our study uncovers behaviorally relevant cell types in the mammalian MLR based on the expression of dopaminergic receptors.


Subject(s)
Dopamine , Dopaminergic Neurons , Locomotion , Mesencephalon , Receptors, Dopamine D1 , Animals , Mesencephalon/metabolism , Mice , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Mice, Inbred C57BL , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , GABAergic Neurons/metabolism , Male
2.
Curr Opin Neurobiol ; 83: 102785, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37774481

ABSTRACT

The role of dopamine in the control of movement is traditionally associated with ascending projections to the basal ganglia. However, more recently descending dopaminergic pathways projecting to downstream brainstem motor circuits were discovered. In lampreys, salamanders, and rodents, these include projections to the downstream Mesencephalic Locomotor Region (MLR), a brainstem region controlling locomotion. Such descending dopaminergic projections could prime brainstem networks controlling movement. Other descending dopaminergic projections have been shown to reach reticulospinal cells involved in the control of locomotion. In addition, dopamine directly modulates the activity of interneurons and motoneurons. Beyond locomotion, dopaminergic inputs modulate visuomotor transformations within the optic tectum (mammalian superior colliculus). Loss of descending dopaminergic inputs will likely contribute to pathological conditions such as in Parkinson's disease.


Subject(s)
Brain Stem , Dopamine , Animals , Locomotion/physiology , Lampreys/physiology , Superior Colliculi , Mammals
3.
J Neurophysiol ; 130(2): 401-416, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37465884

ABSTRACT

The ability to generate and control locomotor movements depends on complex interactions between many areas of the nervous system, the musculoskeletal system, and the environment. How the nervous system manages to accomplish this task has been the subject of investigation for more than a century. In vertebrates, locomotion is generated by neural networks located in the spinal cord referred to as central pattern generators. Descending inputs from the brain stem initiate, maintain, and stop locomotion as well as control speed and direction. Sensory inputs adapt locomotor programs to the environmental conditions. This review presents a comparative and historical overview of some of the neural mechanisms underlying the control of locomotion in vertebrates. We have put an emphasis on spinal mechanisms and descending control.


Subject(s)
Central Pattern Generators , Spinal Cord , Animals , Spinal Cord/physiology , Brain Stem/physiology , Locomotion/physiology , Lampreys/physiology , Neural Networks, Computer , Central Pattern Generators/physiology
4.
Neuroscientist ; : 10738584221139136, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36575956

ABSTRACT

The mesencephalic locomotor region (MLR) controls locomotion in vertebrates. In humans with Parkinson disease, locomotor deficits are increasingly associated with decreased activity in the MLR. This brainstem region, commonly considered to include the cuneiform and pedunculopontine nuclei, has been explored as a target for deep brain stimulation to improve locomotor function, but the results are variable, from modest to promising. However, the MLR is a heterogeneous structure, and identification of the best cell type to target is only beginning. Here, I review the studies that uncovered the role of genetically defined MLR cell types, and I highlight the cells whose activation improves locomotor function in animal models of Parkinson disease. The promising cell types to activate comprise some glutamatergic neurons in the cuneiform and caudal pedunculopontine nuclei, as well as some cholinergic neurons of the pedunculopontine nucleus. Activation of MLR GABAergic neurons should be avoided, since they stop locomotion or evoke bouts flanked with numerous stops. The MLR is also considered a potential target in spinal cord injury, supranuclear palsy, primary progressive freezing of gait, or stroke. Better targeting of the MLR cell types should be achieved through optimized deep brain stimulation protocols, pharmacotherapy, or the development of optogenetics for human use.

5.
J Comp Neurol ; 530(14): 2518-2536, 2022 10.
Article in English | MEDLINE | ID: mdl-35662021

ABSTRACT

The transformation of visual input into motor output is essential to approach a target or avoid a predator. In salamanders, visually guided orientation behaviors have been extensively studied during prey capture. However, the neural circuitry involved is not resolved. Using salamander brain preparations, calcium imaging and tracing experiments, we describe a neural substrate through which retinal input is transformed into spinal motor output. We found that retina stimulation evoked responses in reticulospinal neurons of the middle reticular nucleus, known to control steering movements in salamanders. Microinjection of glutamatergic antagonists in the optic tectum (superior colliculus in mammals) decreased the reticulospinal responses. Using tracing, we found that retina projected to the dorsal layers of the contralateral tectum, where the dendrites of neurons projecting to the middle reticular nucleus were located. In slices, stimulation of the tectal dorsal layers evoked glutamatergic responses in deep tectal neurons retrogradely labeled from the middle reticular nucleus. We then examined how tectum activation translated into spinal motor output. Tectum stimulation evoked motoneuronal responses, which were decreased by microinjections of glutamatergic antagonists in the contralateral middle reticular nucleus. Reticulospinal fibers anterogradely labeled from tracer injection in the middle reticular nucleus were preferentially distributed in proximity with the dendrites of ipsilateral motoneurons. Our work establishes a neural substrate linking visual and motor centers in salamanders. This retino-tecto-reticulo-spinal circuitry is well positioned to control orienting behaviors. Our study bridges the gap between the behavioral studies and the neural mechanisms involved in the transformation of visual input into motor output in salamanders.


Subject(s)
Superior Colliculi , Urodela , Animals , Mammals , Motor Neurons , Retina , Superior Colliculi/physiology , Tectum Mesencephali
6.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34670837

ABSTRACT

In Parkinson's disease (PD), the loss of midbrain dopaminergic cells results in severe locomotor deficits, such as gait freezing and akinesia. Growing evidence indicates that these deficits can be attributed to the decreased activity in the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion. Clinicians are exploring the deep brain stimulation of the MLR as a treatment option to improve locomotor function. The results are variable, from modest to promising. However, within the MLR, clinicians have targeted the pedunculopontine nucleus exclusively, while leaving the cuneiform nucleus unexplored. To our knowledge, the effects of cuneiform nucleus stimulation have never been determined in parkinsonian conditions in any animal model. Here, we addressed this issue in a mouse model of PD, based on the bilateral striatal injection of 6-hydroxydopamine, which damaged the nigrostriatal pathway and decreased locomotor activity. We show that selective optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus in mice expressing channelrhodopsin in a Cre-dependent manner in Vglut2-positive neurons (Vglut2-ChR2-EYFP mice) increased the number of locomotor initiations, increased the time spent in locomotion, and controlled locomotor speed. Using deep learning-based movement analysis, we found that the limb kinematics of optogenetic-evoked locomotion in pathological conditions were largely similar to those recorded in intact animals. Our work identifies the glutamatergic neurons of the cuneiform nucleus as a potentially clinically relevant target to improve locomotor activity in parkinsonian conditions. Our study should open avenues to develop the targeted stimulation of these neurons using deep brain stimulation, pharmacotherapy, or optogenetics.


Subject(s)
Glutamic Acid/metabolism , Locomotion , Midbrain Reticular Formation/pathology , Neurons/metabolism , Optogenetics , Parkinson Disease/metabolism , Animals , Biomechanical Phenomena , Corpus Striatum/metabolism , Disease Models, Animal , Light , Mice , Mice, Transgenic , Midbrain Reticular Formation/metabolism , Oxidopamine/administration & dosage , Rhodopsin/metabolism
7.
Sci Robot ; 6(57)2021 08 11.
Article in English | MEDLINE | ID: mdl-34380756

ABSTRACT

Undulatory swimming represents an ideal behavior to investigate locomotion control and the role of the underlying central and peripheral components in the spinal cord. Many vertebrate swimmers have central pattern generators and local pressure-sensitive receptors that provide information about the surrounding fluid. However, it remains difficult to study experimentally how these sensors influence motor commands in these animals. Here, using a specifically designed robot that captures the essential components of the animal neuromechanical system and using simulations, we tested the hypothesis that sensed hydrodynamic pressure forces can entrain body actuation through local feedback loops. We found evidence that this peripheral mechanism leads to self-organized undulatory swimming by providing intersegmental coordination and body oscillations. Swimming can be redundantly induced by central mechanisms, and we show that, therefore, a combination of both central and peripheral mechanisms offers a higher robustness against neural disruptions than any of them alone, which potentially explains how some vertebrates retain locomotor capabilities after spinal cord lesions. These results broaden our understanding of animal locomotion and expand our knowledge for the design of robust and modular robots that physically interact with the environment.

8.
Front Neural Circuits ; 15: 639900, 2021.
Article in English | MEDLINE | ID: mdl-33897379

ABSTRACT

A key function of the mesencephalic locomotor region (MLR) is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Here, we investigated whether freely behaving mice could brake or turn, based on environmental cues during MLR stimulation. We photostimulated the cuneiform nucleus (part of the MLR) in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. In the linear corridor, gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. In the open-field arena, optogenetic stimulation of the MLR evoked locomotion, and increasing laser power increased locomotor speed. Mice could brake and make sharp turns (~90°) when approaching a corner during MLR stimulation in the open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turn angle. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short-latency spiking in MLR neurons. Our results strengthen the idea that different brainstem neurons convey braking/turning and MLR speed commands in mammals. Our study also shows that Vglut2-positive neurons of the cuneiform nucleus are a relevant target to increase locomotor activity without impeding the ability to brake and turn when approaching obstacles, thus ensuring smooth and adaptable navigation. Our observations may have clinical relevance since cuneiform nucleus stimulation is increasingly considered to improve locomotion function in pathological states such as Parkinson's disease, spinal cord injury, or stroke.


Subject(s)
Mesencephalon , Optogenetics , Animals , Brain Stem , Electric Stimulation , Locomotion , Mice , Neurons
9.
J Comp Neurol ; 529(7): 1273-1292, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32869307

ABSTRACT

Co-transmission of glutamate by brain dopaminergic (DA) neurons was recently proposed as a potential factor influencing cell survival in models of Parkinson's disease. Intriguingly, brain DA nuclei are differentially affected in Parkinson's disease. Whether this is associated with different patterns of co-expression of the glutamatergic phenotype along the rostrocaudal brain axis is unknown in mammals. We hypothesized that, as in zebrafish, the glutamatergic phenotype is present preferentially in the caudal mesodiencephalic DA nuclei. Here, we used in mice a cell fate mapping strategy based on reporter protein expression (ZsGreen) consecutive to previous expression of the vesicular glutamate transporter 2 (Vglut2) gene, coupled with immunofluorescence experiments against tyrosine hydroxylase (TH) or dopamine transporter (DAT). We found three expression patterns in DA cells, organized along the rostrocaudal brain axis. The first pattern (TH-positive, DAT-positive, ZsGreen-positive) was found in A8-A10. The second pattern (TH-positive, DAT-negative, ZsGreen-positive) was found in A11. The third pattern (TH-positive, DAT-negative, ZsGreen-negative) was found in A12-A13. These patterns should help to refine the establishment of the homology of DA nuclei between vertebrate species. Our results also uncover that Vglut2 is expressed at some point during cell lifetime in DA nuclei known to degenerate in Parkinson's disease and largely absent from those that are preserved, suggesting that co-expression of the glutamatergic phenotype in DA cells influences their survival in Parkinson's disease.


Subject(s)
Dopaminergic Neurons/cytology , Mesencephalon/cytology , Vesicular Glutamate Transport Protein 2/metabolism , Animals , Dopaminergic Neurons/metabolism , Female , Male , Mesencephalon/metabolism , Mice , Mice, Inbred C57BL
10.
J Physiol ; 599(2): 677-707, 2021 01.
Article in English | MEDLINE | ID: mdl-33289081

ABSTRACT

KEY POINTS: Inputs impinging on layer 5 pyramidal neurons perform essential operations as these cells represent one of the most important output carriers of the cerebral cortex. However, the contribution of astrocytes, a type of glial cell, to these operations is poorly documented. Here we found that optogenetic activation of astrocytes in the vicinity of layer 5 in the mouse primary visual cortex induces spiking in local pyramidal neurons through Nav1.6 ion channels and prolongs the responses elicited in these neurons by stimulation of their distal inputs in cortical layer 1. This effect partially involved glutamatergic signalling but relied mostly on the astrocytic calcium-binding protein S100ß, which regulates the concentration of calcium in the extracellular space around neurons. These findings show that astrocytes contribute to the fundamental computational operations of the cortex by acting on the ionic environment of neurons. ABSTRACT: The most complex cerebral functions are performed by the cortex, whose most important output is carried out by its layer 5 pyramidal neurons. Their firing reflects integration of the sensory and contextual information that they receive. There is evidence that astrocytes influence cortical neuron firing through the release of gliotransmitters such as ATP, glutamate or GABA. These effects have been described at the network and at the synaptic levels, but it is still unclear how astrocytes influence neuron input-output transfer function at the cellular level. Here, we used optogenetic tools coupled with electrophysiological, imaging and anatomical approaches to test whether and how astrocytic activation affected processing of distal inputs to layer 5 pyramidal neurons (L5PNs). We show that optogenetic activation of astrocytes near L5PN cell body prolonged firing induced by distal inputs to L5PNs and potentiated their ability to trigger spikes. The observed astrocytic effects on L5PN firing involved glutamatergic transmission to some extent but relied mostly on release of S100ß, an astrocytic Ca2+ -binding protein that decreases extracellular Ca2+ once released. This astrocyte-evoked decrease in extracellular Ca2+ elicited firing mediated by activation of Nav1.6 channels. Our findings suggest that astrocytes contribute to the cortical fundamental computational operations by controlling the extracellular ionic environment.


Subject(s)
Astrocytes , Visual Cortex , Animals , Mice , Neurons , Pyramidal Cells , S100 Calcium Binding Protein beta Subunit
11.
Front Neural Circuits ; 14: 590299, 2020.
Article in English | MEDLINE | ID: mdl-33224027

ABSTRACT

During the last 50 years, the serotonergic (5-HT) system was reported to exert a complex modulation of locomotor activity. Here, we focus on two key factors that likely contribute to such complexity. First, locomotion is modulated directly and indirectly by 5-HT neurons. The locomotor circuitry is directly innervated by 5-HT neurons in the caudal brainstem and spinal cord. Also, indirect control of locomotor activity results from ascending projections of 5-HT cells in the rostral brainstem that innervate multiple brain centers involved in motor action planning. Second, each approach used to manipulate the 5-HT system likely engages different 5-HT-dependent mechanisms. This includes the recruitment of different 5-HT receptors, which can have excitatory or inhibitory effects on cell activity. These receptors can be located far or close to the 5-HT release sites, making their activation dependent on the level of 5-HT released. Here we review the activity of different 5-HT nuclei during locomotor activity, and the locomotor effects of 5-HT precursors, exogenous 5-HT, selective 5-HT reuptake inhibitors (SSRI), electrical or chemical stimulation of 5-HT neurons, genetic deletions, optogenetic and chemogenetic manipulations. We highlight both the coherent and controversial aspects of 5-HT modulation of locomotor activity from basal vertebrates to mammals. This mini review may hopefully inspire future studies aiming at dissecting the complex effects of 5-HT on locomotor function.


Subject(s)
Brain Stem/physiology , Locomotion/physiology , Serotonergic Neurons/physiology , Serotonin/physiology , Spinal Cord/physiology , Animals , Brain/drug effects , Brain/physiology , Brain Stem/drug effects , Electric Stimulation , Humans , Locomotion/drug effects , Locomotion/genetics , Optogenetics , Raphe Nuclei/physiology , Serotonergic Neurons/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Spinal Cord/drug effects
12.
Trends Neurosci ; 43(11): 916-930, 2020 11.
Article in English | MEDLINE | ID: mdl-33010947

ABSTRACT

How do four-legged animals adapt their locomotion to the environment? How do central and peripheral mechanisms interact within the spinal cord to produce adaptive locomotion and how is locomotion recovered when spinal circuits are perturbed? Salamanders are the only tetrapods that regenerate voluntary locomotion after full spinal transection. Given their evolutionary position, they provide a unique opportunity to bridge discoveries made in fish and mammalian models. Genetic dissection of salamander neural circuits is becoming feasible with new methods for precise manipulation, elimination, and visualisation of cells. These approaches can be combined with classical tools in neuroscience and with modelling and a robotic environment. We propose that salamanders provide a blueprint of the function, evolution, and regeneration of tetrapod locomotor circuits.


Subject(s)
Spinal Cord Injuries , Urodela , Animals , Locomotion , Spinal Cord , Walking
13.
J Neurosci ; 40(44): 8478-8490, 2020 10 28.
Article in English | MEDLINE | ID: mdl-32998974

ABSTRACT

Meso-diencephalic dopaminergic neurons are known to modulate locomotor behaviors through their ascending projections to the basal ganglia, which in turn project to the mesencephalic locomotor region, known to control locomotion in vertebrates. In addition to their ascending projections, dopaminergic neurons were found to increase locomotor movements through direct descending projections to the mesencephalic locomotor region and spinal cord. Intriguingly, fibers expressing tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, were also observed around reticulospinal neurons of lampreys. We now examined the origin and the role of this innervation. Using immunofluorescence and tracing experiments, we found that fibers positive for dopamine innervate reticulospinal neurons in the four reticular nuclei of lampreys. We identified the dopaminergic source using tracer injections in reticular nuclei, which retrogradely labeled dopaminergic neurons in a caudal diencephalic nucleus (posterior tuberculum [PT]). Using voltammetry in brain preparations isolated in vitro, we found that PT stimulation evoked dopamine release in all four reticular nuclei, but not in the spinal cord. In semi-intact preparations where the brain is accessible and the body moves, PT stimulation evoked swimming, and injection of a D1 receptor antagonist within the middle rhombencephalic reticular nucleus was sufficient to decrease reticulospinal activity and PT-evoked swimming. Our study reveals that dopaminergic neurons have access to command neurons that integrate sensory and descending inputs to activate spinal locomotor neurons. As such, our findings strengthen the idea that dopamine can modulate locomotor behavior both via ascending projections to the basal ganglia and through descending projections to brainstem motor circuits.SIGNIFICANCE STATEMENT Meso-diencephalic dopaminergic neurons play a key role in modulating locomotion by releasing dopamine in the basal ganglia, spinal networks, and the mesencephalic locomotor region, a brainstem region that controls locomotion in a graded fashion. Here, we report in lampreys that dopaminergic neurons release dopamine in the four reticular nuclei where reticulospinal neurons are located. Reticulospinal neurons integrate sensory and descending suprareticular inputs to control spinal interneurons and motoneurons. By directly modulating the activity of reticulospinal neurons, meso-diencephalic dopaminergic neurons control the very last instructions sent by the brain to spinal locomotor circuits. Our study reports on a new direct descending dopaminergic projection to reticulospinal neurons that modulates locomotor behavior.


Subject(s)
Dopaminergic Neurons/physiology , Locomotion/physiology , Reticular Formation/physiology , Spinal Cord/physiology , Animals , Biomechanical Phenomena , Dopamine Antagonists/pharmacology , Electric Stimulation , Electrophysiological Phenomena , Lampreys , Nerve Fibers/physiology , Receptors, Dopamine D1/antagonists & inhibitors , Swimming , Tyrosine 3-Monooxygenase/physiology
14.
J Neurophysiol ; 123(6): 2326-2342, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32401145

ABSTRACT

Serotoninergic (5-HT) neurons are powerful modulators of spinal locomotor circuits. Most studies on 5-HT modulation focused on the effect of exogenous 5-HT and these studies provided key information about the cellular mechanisms involved. Less is known about the effects of increased release of endogenous 5-HT with selective serotonin reuptake inhibitors. In mammals, such molecules were shown to destabilize the fictive locomotor output of spinal limb networks through 5-HT1A receptors. However, in tetrapods little is known about the effects of increased 5-HT release on the locomotor output of axial networks, which are coordinated with limb circuits during locomotion from basal vertebrates to mammals. Here, we examined the effect of citalopram on fictive locomotion generated in axial segments of isolated spinal cords in salamanders, a tetrapod where raphe 5-HT reticulospinal neurons and intraspinal 5-HT neurons are present as in other vertebrates. Using electrophysiological recordings of ventral roots, we show that fictive locomotion generated by bath-applied glutamatergic agonists is destabilized by citalopram. Citalopram-induced destabilization was prevented by a 5-HT1A receptor antagonist, whereas a 5-HT1A receptor agonist destabilized fictive locomotion. Using immunofluorescence experiments, we found 5-HT-positive fibers and varicosities in proximity with motoneurons and glutamatergic interneurons that are likely involved in rhythmogenesis. Our results show that increasing 5-HT release has a deleterious effect on axial locomotor activity through 5-HT1A receptors. This is consistent with studies in limb networks of turtle and mouse, suggesting that this part of the complex 5-HT modulation of spinal locomotor circuits is common to limb and axial networks in limbed vertebrates.NEW & NOTEWORTHY Little is known about the modulation exerted by endogenous serotonin on axial locomotor circuits in tetrapods. Using axial ventral root recordings in salamanders, we found that a serotonin reuptake blocker destabilized fictive locomotor activity through 5-HT1A receptors. Our anatomical results suggest that serotonin is released on motoneurons and glutamatergic interneurons possibly involved in rhythmogenesis. Our study suggests that common serotoninergic mechanisms modulate axial motor circuits in amphibians and limb motor circuits in reptiles and mammals.


Subject(s)
Behavior, Animal/drug effects , Citalopram/pharmacology , Interneurons/metabolism , Locomotion/drug effects , Motor Neurons/metabolism , Nerve Net/drug effects , Receptor, Serotonin, 5-HT1A/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Spinal Nerve Roots/drug effects , Urodela/physiology , Ambystoma mexicanum , Animals , Receptor, Serotonin, 5-HT1A/drug effects , Salamandridae , Urodela/metabolism
15.
Curr Biol ; 30(7): 1356, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32259495
16.
Curr Biol ; 30(5): R229-R232, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32155428

ABSTRACT

A new study provides evidence in zebrafish that dopamine increases the activity of motor neurons in the spinal cord, and this translates into faster swimming bouts in response to visual stimulation.


Subject(s)
Motor Neurons , Swimming , Animals , Motor Activity , Spinal Cord , Zebrafish
17.
Front Neurorobot ; 14: 604426, 2020.
Article in English | MEDLINE | ID: mdl-33424576

ABSTRACT

Diverse locomotor behaviors emerge from the interactions between the spinal central pattern generator (CPG), descending brain signals and sensory feedback. Salamander motor behaviors include swimming, struggling, forward underwater stepping, and forward and backward terrestrial stepping. Electromyographic and kinematic recordings of the trunk show that each of these five behaviors is characterized by specific patterns of muscle activation and body curvature. Electrophysiological recordings in isolated spinal cords show even more diverse patterns of activity. Using numerical modeling and robotics, we explored the mechanisms through which descending brain signals and proprioceptive feedback could take advantage of the flexibility of the spinal CPG to generate different motor patterns. Adapting a previous CPG model based on abstract oscillators, we propose a model that reproduces the features of spinal cord recordings: the diversity of motor patterns, the correlation between phase lags and cycle frequencies, and the spontaneous switches between slow and fast rhythms. The five salamander behaviors were reproduced by connecting the CPG model to a mechanical simulation of the salamander with virtual muscles and local proprioceptive feedback. The main results were validated on a robot. A distributed controller was used to obtain the fast control loops necessary for implementing the virtual muscles. The distributed control is demonstrated in an experiment where the robot splits into multiple functional parts. The five salamander behaviors were emulated by regulating the CPG with two descending drives. Reproducing the kinematics of backward stepping and struggling however required stronger muscle contractions. The passive oscillations observed in the salamander's tail during forward underwater stepping could be reproduced using a third descending drive of zero to the tail oscillators. This reduced the drag on the body in our hydrodynamic simulation. We explored the effect of local proprioceptive feedback during swimming and forward terrestrial stepping. We found that feedback could replace or reduce the need for different drives in both cases. It also reduced the variability of intersegmental phase lags toward values appropriate for locomotion. Our work suggests that different motor behaviors do not require different CPG circuits: a single circuit can produce various behaviors when modulated by descending drive and sensory feedback.

19.
J Neurosci ; 37(40): 9759-9770, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28924005

ABSTRACT

The mesencephalic locomotor region (MLR) plays a crucial role in locomotor control. In vertebrates, stimulation of the MLR at increasing intensities elicits locomotion of growing speed. This effect has been presumed to result from higher brain inputs activating the MLR like a dimmer switch. Here, we show in lampreys (Petromyzon marinus) of either sex that incremental stimulation of a region homologous to the mammalian substantia nigra pars compacta (SNc) evokes increasing activation of MLR cells with a graded increase in the frequency of locomotor movements. Neurons co-storing glutamate and dopamine were found to project from the primal SNc to the MLR. Blockade of glutamatergic transmission largely diminished MLR cell responses and locomotion. Local blockade of D1 receptors in the MLR decreased locomotor frequency, but did not disrupt the SNc-evoked graded control of locomotion. Our findings revealed the presence of a glutamatergic input to the MLR originating from the primal SNc that evokes graded locomotor movements.SIGNIFICANCE STATEMENT The mesencephalic locomotor region (MLR) plays a crucial role in the control of locomotion. It projects downward to reticulospinal neurons that in turn activate the spinal locomotor networks. Increasing the intensity of MLR stimulation produces a growing activation of reticulospinal cells and a progressive increase in the speed of locomotor movements. Since the discovery of the MLR some 50 years ago, it has been presumed that higher brain regions activate the MLR in a graded fashion, but this has not been confirmed yet. Here, using a combination of techniques from cell to behavior, we provide evidence of a new glutamatergic pathway activating the MLR in a graded fashion, and consequently evoking a progressive increase in locomotor output.


Subject(s)
Glutamic Acid/physiology , Locomotion/physiology , Neurons/physiology , Substantia Nigra/physiology , Swimming/physiology , Action Potentials/physiology , Animals , Lampreys
20.
Front Neurosci ; 11: 295, 2017.
Article in English | MEDLINE | ID: mdl-28603482

ABSTRACT

In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR) from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...