Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38798418

ABSTRACT

Organisms must sense temperature and modify their physiology to ensure survival during environmental stress. Elevated temperature leads to reduced fertility in most sexually reproducing organisms. Maternally supplied mRNAs are required for embryogenesis. They encode proteins that govern early events in embryonic patterning. RNA-binding proteins (RBPs) are major effectors of maternal mRNA regulation. MEX-3 is a conserved RBP essential for anterior patterning of Caenorhabditis elegans embryos. We previously demonstrated that the mex-3 3' untranslated region (3'UTR) represses MEX-3 abundance in the germline yet is dispensable for fertility. Here, we show that the 3'UTR becomes essential during thermal stress. Deletion of the 3'UTR causes a highly penetrant temperature sensitive embryonic lethality phenotype distinct from a mex-3 null. Loss of the 3'UTR decreases MEX-3 abundance specifically in maturing oocytes and early embryos experiencing temperature stress, suggesting a mechanism that regulates MEX-3 abundance at the oocyte-to-embryo transition is sensitive to temperature. We propose that a primary role of the mex-3 3'UTR is to buffer MEX-3 expression to ensure viability during fluctuating temperature. We hypothesize that a major role of maternally supplied mRNAs is to ensure robust expression of key cell fate determinants in uncertain conditions.

2.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37956108

ABSTRACT

Microdeletion syndromes are genetic diseases caused by multilocus chromosomal deletions too small to be detected by karyotyping. They are typified by complex pleiotropic developmental phenotypes that depend both on the extent of the deletion and variations in genetic background. Microdeletion alleles cause a wide array of consequences involving multiple pathways. How simultaneous haploinsufficiency of numerous adjacent genes leads to complex and variable pleiotropic phenotypes is not well understood. CRISPR/Cas9 genome editing has been shown to induce microdeletion-like alleles at a meaningful rate. Here, we describe a microdeletion allele in Caenorhabditis elegans recovered during a CRISPR/Cas9 genome editing experiment. We mapped the allele to chromosome V, balanced it with a reciprocal translocation crossover suppressor, and precisely defined the breakpoint junction. The allele simultaneously removes 32 protein-coding genes, yet animals homozygous for this mutation are viable as adults. Homozygous animals display a complex phenotype including maternal effect lethality, producing polynucleated embryos that grow into uterine tumors, vulva morphogenesis defects, body wall distensions, uncoordinated movement, and a shortened life span typified by death by bursting. Our work provides an opportunity to explore the complexity and penetrance of microdeletion phenotypes in a simple genetic model system.


Subject(s)
Caenorhabditis elegans , Gene Editing , Animals , Female , Phenotype , Mutation , Caenorhabditis elegans/genetics , Chromosome Deletion
3.
Front Cell Dev Biol ; 10: 1094295, 2022.
Article in English | MEDLINE | ID: mdl-36684428

ABSTRACT

RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.

4.
PLoS Genet ; 17(8): e1009775, 2021 08.
Article in English | MEDLINE | ID: mdl-34424904

ABSTRACT

RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Embryonic Development/genetics , RNA-Binding Proteins/metabolism , 3' Untranslated Regions/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Fertility/genetics , Gene Expression Regulation, Developmental/genetics , Germ Cells/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
5.
Evol Bioinform Online ; 17: 11769343211014167, 2021.
Article in English | MEDLINE | ID: mdl-34017166

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two sets of SARS-CoV-2 genomic sequences to identify emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, 20 variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5' untranslated region (UTR), including a group of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-ss molecular switch in the 3'UTR. Finally, 5 variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M (stem loop 2 m) selfish genetic element, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. Our analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences.

6.
bioRxiv ; 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32577650

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has motivated a widespread effort to understand its epidemiology and pathogenic mechanisms. Modern high-throughput sequencing technology has led to the deposition of vast numbers of SARS-CoV-2 genome sequences in curated repositories, which have been useful in mapping the spread of the virus around the globe. They also provide a unique opportunity to observe virus evolution in real time. Here, we evaluate two cohorts of SARS-CoV-2 genomic sequences to identify rapidly emerging variants within structured cis-regulatory elements of the SARS-CoV-2 genome. Overall, twenty variants are present at a minor allele frequency of at least 0.5%. Several enhance the stability of Stem Loop 1 in the 5'UTR, including a set of co-occurring variants that extend its length. One appears to modulate the stability of the frameshifting pseudoknot between ORF1a and ORF1b, and another perturbs a bi-stable molecular switch in the 3'UTR. Finally, five variants destabilize structured elements within the 3'UTR hypervariable region, including the S2M stem loop, raising questions as to the functional relevance of these structures in viral replication. Two of the most abundant variants appear to be caused by RNA editing, suggesting host-viral defense contributes to SARS-CoV-2 genome heterogeneity. This analysis has implications for the development of therapeutics that target viral cis-regulatory RNA structures or sequences, as rapidly emerging variations in these regions could lead to drug resistance.

7.
Biophys J ; 118(8): 2001-2014, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32294479

ABSTRACT

CCCH-type tandem zinc finger (TZF) domains are found in many RNA-binding proteins (RBPs) that regulate the essential processes of post-transcriptional gene expression and splicing through direct protein-RNA interactions. In Caenorhabditis elegans, RBPs control the translation, stability, or localization of maternal messenger RNAs required for patterning decisions before zygotic gene activation. MEX-5 (Muscle EXcess) is a C. elegans protein that leads a cascade of RBP localization events that is essential for axis polarization and germline differentiation after fertilization. Here, we report that at room temperature, the CCCH-type TZF domain of MEX-5 contains an unstructured zinc finger that folds upon binding of its RNA target. We have characterized the structure and dynamics of the TZF domain of MEX-5 and designed a variant MEX-5 in which both fingers are fully folded in the absence of RNA. Within the thermal range experienced by C. elegans, the population of the unfolded state of the TZF domain of MEX-5 varies. We observe that the TZF domain becomes less disordered at lower temperatures and more disordered at higher temperatures. However, in the temperature range in which C. elegans is fertile, when MEX-5 needs to be functional, only one of the two zinc fingers is folded.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Protein Binding , RNA , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Zinc Fingers
8.
Dev Biol ; 446(2): 193-205, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30599151

ABSTRACT

Proper germ cell sex determination in Caenorhabditis nematodes requires a network of RNA-binding proteins (RBPs) and their target mRNAs. In some species, changes in this network enabled limited XX spermatogenesis, and thus self-fertility. In C. elegans, one of these selfing species, the global sex-determining gene tra-2 is regulated in germ cells by a conserved RBP, GLD-1, via the 3' untranslated region (3'UTR) of its transcript. A C. elegans-specific GLD-1 cofactor, FOG-2, is also required for hermaphrodite sperm fate, but how it modifies GLD-1 function is unknown. Germline feminization in gld-1 and fog-2 null mutants has been interpreted as due to cell-autonomous elevation of TRA-2 translation. Consistent with the proposed role of FOG-2 in translational control, the abundance of nearly all GLD-1 target mRNAs (including tra-2) is unchanged in fog-2 mutants. Epitope tagging reveals abundant TRA-2 expression in somatic tissues, but an undetectably low level in wild-type germ cells. Loss of gld-1 function elevates germline TRA-2 expression to detectable levels, but loss of fog-2 function does not. A simple quantitative model of tra-2 activity constrained by these results can successfully sort genotypes into normal or feminized groups. Surprisingly, fog-2 and gld-1 activity enable the sperm fate even when GLD-1 cannot bind to the tra-2 3' UTR. This suggests the GLD-1-FOG-2 complex regulates uncharacterized sites within tra-2, or other mRNA targets. Finally, we quantify the RNA-binding capacities of dominant missense alleles of GLD-1 that act genetically as "hyper-repressors" of tra-2 activity. These variants bind RNA more weakly in vitro than does wild-type GLD-1. These results indicate that gld-1 and fog-2 regulate germline sex via multiple interactions, and that our understanding of the control and evolution of germ cell sex determination in the C. elegans hermaphrodite is far from complete.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Hermaphroditic Organisms/genetics , Transcription Factors/genetics , 3' Untranslated Regions/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Female , Gene Expression Profiling , Hermaphroditic Organisms/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Genetic , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
9.
Curr Biol ; 28(1): 60-69.e8, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29276126

ABSTRACT

Intracellular protein gradients underlie essential cellular and developmental processes, but the mechanisms by which they are established are incompletely understood. During the asymmetric division of the C. elegans zygote, the RNA-binding protein MEX-5 forms an anterior-rich cytoplasmic gradient that causes the RNA-binding protein POS-1 to form an opposing, posterior-rich gradient. We demonstrate that the polo-like kinase PLK-1 mediates the repulsive coupling between MEX-5 and POS-1 by increasing the mobility of POS-1 in the anterior. PLK-1 is enriched in the anterior cytoplasm and phosphorylates POS-1, which is both necessary and sufficient to increase POS-1 mobility. Regulation of POS-1 mobility depends on both the interaction between PLK-1 and MEX-5 and between MEX-5 and RNA, suggesting that MEX-5 may recruit PLK-1 to RNA in the anterior. The low concentration of MEX-5/PLK-1 in the posterior cytoplasm provides a permissive environment for the retention of POS-1, which depends on POS-1 RNA binding. Our findings describe a novel reaction/diffusion mechanism in which the asymmetric distribution of cytoplasmic PLK-1 couples two RNA-binding protein gradients, thereby partitioning the cytoplasm.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Carrier Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Cytoplasm/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , RNA-Binding Proteins , Zygote/metabolism
10.
CRISPR J ; 1(6): 355-357, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30687814
11.
J Vis Exp ; (125)2017 07 28.
Article in English | MEDLINE | ID: mdl-28784977

ABSTRACT

Native polyacrylamide gel electrophoresis is a fundamental tool of molecular biology that has been used extensively for the biochemical analysis of RNA-protein interactions. These interactions have been traditionally analyzed with polyacrylamide gels generated between two glass plates and samples electrophoresed vertically. However, polyacrylamide gels cast in trays and electrophoresed horizontally offers several advantages. For example, horizontal gels used to analyze complexes between fluorescent RNA substrates and specific proteins can be imaged multiple times as electrophoresis progresses. This provides the unique opportunity to monitor RNA-protein complexes at several points during the experiment. In addition, horizontal gel electrophoresis makes it possible to analyze many samples in parallel. This can greatly facilitate time course experiments as well as analyzing multiple reactions simultaneously to compare different components and conditions. Here we provide a detailed protocol for generating and using horizontal native gel electrophoresis for analyzing RNA-Protein interactions.


Subject(s)
Electrophoresis, Polyacrylamide Gel , Proteins/metabolism , RNA/metabolism , Animals , Fluorescent Dyes/chemistry , Neoplasm Proteins/genetics , Protein Binding , Proteins/chemistry , RNA/chemistry , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Video Recording , Xenopus/metabolism
12.
Translation (Austin) ; 5(1): e1295130, 2017.
Article in English | MEDLINE | ID: mdl-28702278

ABSTRACT

Interactions between RNA binding proteins (RBPs) and mRNAs are critical to post-transcriptional gene regulation. Eukaryotic genomes encode thousands of mRNAs and hundreds of RBPs. However, in contrast to interactions between transcription factors (TFs) and DNA, the interactome between RBPs and RNA has been explored for only a small number of proteins and RNAs. This is largely because the focus has been on using 'protein-centered' (RBP-to-RNA) interaction mapping methods that identify the RNAs with which an individual RBP interacts. While powerful, these methods cannot as of yet be applied to the entire RBPome. Moreover, it may be desirable for a researcher to identify the repertoire of RBPs that can interact with an mRNA of interest-in a 'gene-centered' manner-yet few such techniques are available. Here, we present Protein-RNA Interaction Mapping Assay (PRIMA) with which an RNA 'bait' can be tested versus multiple RBP 'preys' in a single experiment. PRIMA is a translation-based assay that examines interactions in the yeast cytoplasm, the cellular location of mRNA translation. We show that PRIMA can be used with small RNA elements, as well as with full-length Caenorhabditis elegans 3' UTRs. PRIMA faithfully recapitulated numerous well-characterized RNA-RBP interactions and also identified novel interactions, some of which were confirmed in vivo. We envision that PRIMA will provide a complementary tool to expand the depth and scale with which the RNA-RBP interactome can be explored.

13.
Dev Dyn ; 245(9): 925-36, 2016 09.
Article in English | MEDLINE | ID: mdl-27294288

ABSTRACT

BACKGROUND: In C. elegans, germline development and early embryogenesis rely on posttranscriptional regulation of maternally transcribed mRNAs. In many cases, the 3' untranslated region (UTR) is sufficient to govern the expression patterns of these transcripts. Several RNA-binding proteins are required to regulate maternal mRNAs through the 3'UTR. Despite intensive efforts to map RNA-binding protein-mRNA interactions in vivo, the biological impact of most binding events remains unknown. Reporter studies using single copy integrated transgenes are essential to evaluate the functional consequences of interactions between RNA-binding proteins and their associated mRNAs. RESULTS: In this report, we present an efficient method of generating reporter strains with improved throughput by using a library variant of MosSCI transgenesis. Furthermore, using RNA interference, we identify the suite of RNA-binding proteins that control the expression pattern of five different maternal mRNAs. CONCLUSIONS: The results provide a generalizable and efficient strategy to assess the functional relevance of protein-RNA interactions in vivo, and reveal new regulatory connections between key RNA-binding proteins and their maternal mRNA targets. Developmental Dynamics 245:925-936, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , 3' Untranslated Regions/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Protein Binding/genetics , RNA Interference , RNA, Messenger, Stored/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
F1000Res ; 5: 2627, 2016.
Article in English | MEDLINE | ID: mdl-29098073

ABSTRACT

RNA-binding proteins play a variety of roles in cellular physiology. Some regulate mRNA processing, mRNA abundance, and translation efficiency. Some fight off invader RNA through small RNA-driven silencing pathways. Others sense foreign sequences in the form of double-stranded RNA and activate the innate immune response. Yet others, for example cytoplasmic aconitase, act as bi-functional proteins, processing metabolites in one conformation and regulating metabolic gene expression in another. Not all are involved in gene regulation. Some play structural roles, for example, connecting the translational machinery to the endoplasmic reticulum outer membrane. Despite their pervasive role and relative importance, it has remained difficult to identify new RNA-binding proteins in a systematic, unbiased way. A recent body of literature from several independent labs has defined robust, easily adaptable protocols for mRNA interactome discovery. In this review, I summarize the methods and review some of the intriguing findings from their application to a wide variety of biological systems.

15.
Dev Cell ; 34(1): 108-18, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26096734

ABSTRACT

The regulation of mRNA translation is of fundamental importance in biological mechanisms ranging from embryonic axis specification to the formation of long-term memory. POS-1 is one of several CCCH zinc-finger RNA-binding proteins that regulate cell fate specification during C. elegans embryogenesis. Paradoxically, pos-1 mutants exhibit striking defects in endo-mesoderm development but have wild-type distributions of SKN-1, a key determinant of endo-mesoderm fates. RNAi screens for pos-1 suppressors identified genes encoding the cytoplasmic poly(A)-polymerase homolog GLD-2, the Bicaudal-C homolog GLD-3, and the protein NEG-1. We show that NEG-1 localizes in anterior nuclei, where it negatively regulates endo-mesoderm fates. In posterior cells, POS-1 binds the neg-1 3' UTR to oppose GLD-2 and GLD-3 activities that promote NEG-1 expression and cytoplasmic lengthening of the neg-1 mRNA poly(A) tail. Our findings uncover an intricate series of post-transcriptional regulatory interactions that, together, achieve precise spatial expression of endo-mesoderm fates in C. elegans embryos.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Carrier Proteins/metabolism , Cytoplasm/metabolism , Nuclear Proteins/metabolism , Polyadenylation/physiology , RNA, Helminth/metabolism , RNA, Messenger/metabolism , Animals , Caenorhabditis elegans/embryology , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/physiology , Germ Cells/metabolism , Mesoderm/metabolism , RNA, Helminth/genetics , RNA-Binding Proteins
16.
Structure ; 23(5): 903-911, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25914058

ABSTRACT

Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and specificity is elucidated. We find that specific binding of single-stranded DNA is regulated by the cooperative dimerization of APOBEC3A. The crystal structure elucidates this homodimer as a symmetric domain swap of the N-terminal residues. This dimer interface provides insights into how cooperative protein-protein interactions may affect function in the APOBEC3 enzymes and provides a potential scaffold for strategies aimed at reducing their mutation load.


Subject(s)
Cytidine Deaminase/chemistry , Cytidine Deaminase/metabolism , DNA, Single-Stranded/metabolism , Proteins/chemistry , Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Cytidine Deaminase/genetics , Dimerization , Humans , Models, Molecular , Mutation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Proteins/genetics , Substrate Specificity , Zinc/metabolism
17.
RNA ; 21(4): 725-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25780210

Subject(s)
Publishing , RNA
18.
J Biol Chem ; 289(51): 35530-41, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25368328

ABSTRACT

Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside of this motif have a limited contribution to binding free energy. For mouse MSI1, recognition is determined by the first of the two RRM domains. The second RRM adds affinity but does not contribute to binding specificity. In contrast, the recognition element for Drosophila MSI is more extensive than the mouse homolog, suggesting functional divergence. The short nature of the binding determinant suggests that protein-RNA affinity alone is insufficient to drive target selection by MSI family proteins.


Subject(s)
Conserved Sequence/genetics , Nucleotide Motifs/genetics , RNA-Binding Proteins/genetics , RNA/genetics , Algorithms , Animals , Base Sequence , Binding Sites/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fluorescence Polarization , Humans , Kinetics , Magnetic Resonance Spectroscopy , Mice , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Binding , RNA/metabolism , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/metabolism , Sequence Homology, Nucleic Acid
19.
Elife ; 32014 Jun 16.
Article in English | MEDLINE | ID: mdl-24935936

ABSTRACT

Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon ω-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. We identify stearoyl-CoA desaturase-1 as a MSI1 target, revealing a feedback loop between ω-9 fatty acid biosynthesis and MSI1 activity. We propose that other RRM proteins could act as metabolite sensors to couple gene expression changes to physiological state.


Subject(s)
Nerve Tissue Proteins/metabolism , Oleic Acid/chemistry , RNA-Binding Proteins/metabolism , Stem Cells/cytology , Allosteric Site , Amino Acid Motifs , Animals , Cell Differentiation , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation , Mice , Molecular Dynamics Simulation , Pluripotent Stem Cells/cytology , Protein Structure, Tertiary , Recombinant Proteins/metabolism , Stearoyl-CoA Desaturase/metabolism , Structure-Activity Relationship
20.
J Biol Chem ; 288(42): 30463-30472, 2013 Oct 18.
Article in English | MEDLINE | ID: mdl-24014033

ABSTRACT

Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that OMA-1/2 are required to repress the expression of a glp-1 3'-UTR reporter in developing oocytes. OMA-1 binds with high affinity to a conserved region of the glp-1 3'-UTR previously shown to interact with POS-1 and GLD-1, RNA-binding proteins required for glp-1 reporter repression in the posterior of fertilized embryos. Our results reveal that OMA-1 is a sequence-specific RNA-binding protein required to repress expression of maternal transcripts during oogenesis and suggest that interplay between OMA-1 and other factors for overlapping binding sites helps to coordinate the transition from oocyte to embryo.


Subject(s)
3' Untranslated Regions/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Carrier Proteins/metabolism , Oocytes/metabolism , Oogenesis/physiology , RNA, Helminth/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Female , Oocytes/cytology , RNA, Helminth/genetics , RNA-Binding Proteins , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...