Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 9(7): 1048-56, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23639678

ABSTRACT

Nanometer scale surface features on implants and prostheses can potentially be used to enhance osseointegration and may also add further functionalities, such as infection resistance, to the implant. In this study, a nanostructured noble metal coating consisting of palladium, gold and silver, never previously used in bone applications, was applied to machined titanium screws to evaluate osseointegration after 6 and 12 weeks in rabbit tibiae and femurs. Infection resistance was confirmed by in vitro adhesion test. A qualitatively and quantitatively similar in vivo bone response was observed for the coated and uncoated control screws, using histology, histomorphometry and electron microscopy. The bone-implant interface analysis revealed an extensive bone formation and direct bone-implant contact. These results demonstrate that the nanostructured noble metal coating with antimicrobial properties promotes osseointegration and may therefore be used to add extra implant functionality in the form of increased resistance to infection without the use of antibiotics. FROM THE CLINICAL EDITOR: The authors of this paper demonstrate that nanostructured noble metal coating of implants and prostheses used in orthopedic procedures promotes osseointegration and may be used to add extra implant functionality in the form of increased resistance to infection without the use of antibiotics.


Subject(s)
Anti-Infective Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Metals/pharmacology , Nanostructures/chemistry , Osseointegration/drug effects , Titanium/pharmacology , Animals , Bacterial Adhesion/drug effects , Colony Count, Microbial , Femur/drug effects , Femur/physiology , Femur/ultrastructure , Implants, Experimental , Interferometry , Nanostructures/ultrastructure , Osteogenesis/drug effects , Photoelectron Spectroscopy , Rabbits , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties , Tibia/drug effects , Tibia/physiology , Tibia/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...