Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36837011

ABSTRACT

Hybrid polysiloxanes and polysilsesquioxanes grafted with naturally occurring bioactive phytochemicals: eugenol and linalool, were synthesized and investigated with regard to their structure and properties. The two series of materials, differing in the type of inorganic structure and the content of active groups, were coated onto the surface of glass plates, and their antibiofilm activities against bacteria Aeromonas hydrophila were assessed by luminometry and fluorescence microscopy. Bioactivity was correlated with specific properties of the hybrid coatings (chemical structure, surface free energy and adhesiveness). The functionalized polysilsesquioxanes exhibited the most favorable anti-adhesive effects. Cell adhesion after 6 days of incubation, expressed as RLU/cm2, was significantly reduced (44 and 67 for, respectively, Z-E-100 and Z-L-100, compared to 517 for the control glass carrier). The surface stickiness of polysiloxane films deteriorated their anti-adhesion properties, despite the presence of a large amount of bioactive species.

2.
Molecules ; 27(6)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35335219

ABSTRACT

Pulcherrimin is a secondary metabolite of yeasts belonging to the Metschnikowia pulcherrima clade, and pulcherrimin formation is responsible for the antimicrobial action of its producers. Understanding the environmental function of this metabolite can provide insight into various microbial interactions and enables the efficient development of new effective bioproducts and methods. In this study, we evaluated the antimicrobial and antiadhesive action of yeast pulcherrimin, as well as its protective properties under selected stressful conditions. Classical microbiological plate methods, microscopy, and physico-chemical testing were used. The results show that pure pulcherrimin does not have antimicrobial properties, but its unique hydrophilic nature may hinder the adhesion of hydrophilic bacterial cells to abiotic surfaces. Pulcherrimin also proved to be a good cell protectant against UV-C radiation at both high and low temperatures.


Subject(s)
Anti-Bacterial Agents , Bone Plates , Cold Temperature , Microbial Interactions , Microbiological Techniques
3.
Molecules ; 26(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557279

ABSTRACT

Intrinsic hydrophobicity is the reason for efficient bacterial settlement and biofilm growth on silicone materials. Those unwelcomed phenomena may play an important role in pathogen transmission. We have proposed an approach towards the development of new anti-biofilm strategies that resulted in novel antimicrobial hydrophobic silicones. Those functionalized polysiloxanes grafted with side 2-(carboxymethylthioethyl)-, 2-(n-propylamidomethylthioethyl)- and 2-(mercaptoethylamidomethylthioethyl)- groups showed a wide range of antimicrobial properties towards selected strains of bacteria (reference strains Staphylococcus aureus, Escherichia coli and water-borne isolates Agrobacterium tumefaciens, Aeromonas hydrophila), fungi (Aureobasidium pullulans) and algae (Chlorella vulgaris), which makes them valuable antibacterial and antibiofilm agents. Tested microorganisms showed various levels of biofilm formation, but particularly effective antibiofilm activity was demonstrated for bacterial isolate A. hydrophila with high adhesion abilities. In the case of modified surfaces, the relative coefficient of adhesion for this strain was 18 times lower in comparison to the control glass sample.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Adhesion/drug effects , Hydrophobic and Hydrophilic Interactions , Siloxanes/chemistry , Siloxanes/pharmacology , Anti-Infective Agents/chemical synthesis , Siloxanes/chemical synthesis
4.
Materials (Basel) ; 13(15)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32726989

ABSTRACT

The aim of the study was to assess the photocatalytic (decompose staining particles, K/S values, the color differences, CIE L*a*b* color) and antimicrobial properties of textiles modified with TiO2 and ZnO nanoparticles (NPs) confirmed by X-ray diffraction, dynamic light scattering, SEM-EDX) in visible light conditions. The antimicrobial effectiveness of modified textiles under model conditions has been reported against 5 microorganisms: Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Candida albicans, Aspergillus niger (AATCC Test Method 100-2004). In real conditions in bathrooms, significant biostatic activity was shown on the surface of the modified towels. The number of microorganisms decreased by 1-5 log to the level of 0-5 CFU/cm2 in the case of bacteria: Enterobacteriaceae, Enterococcus, the coli group and E. coli, Pseudomonas. Statistically significant reduction of the total number of bacteria and fungi (by 1 log), and the concentration of gases (NO2, CO2, CO) in the air of bathrooms was determined. The removal or reduction of volatile organic compounds (VOCs) concentration (SPME-GC-MS analysis) in the air above the modified towels has also been determined. It was found that the lighting type (natural, artificial), time (1.5 and 7 h/day), air humidity (RH = 36-67%) and light intensity (81-167 lux) are important for the efficiency of photocatalysis. Textile materials modified with TiO2 and ZnO NPs can be used as self-cleaning towels. They can also help purify air from microorganisms, VOCs and undesirable gases.

5.
Int J Mol Sci ; 20(8)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31022884

ABSTRACT

Antibiofilm strategies may be based on the prevention of initial bacterial adhesion, the inhibition of biofilm maturation or biofilm eradication. N-acetyl-L-cysteine (NAC), widely used in medical treatments, offers an interesting approach to biofilm destruction. However, many Eubacteria strains are able to enzymatically decompose the NAC molecule. This is the first report on the action of two hybrid materials, NAC-Si-1 and NAC-Si-2, against bacteria isolated from a water environment: Agrobacterium tumefaciens, Aeromonas hydrophila, Citrobacter freundii, Enterobacter soli, Janthinobacterium lividum and Stenotrophomonas maltophilia. The NAC was grafted onto functional siloxane polymers to reduce its availability to bacterial enzymes. The results confirm the bioactivity of NAC. However, the final effect of its action was environment- and strain-dependent. Moreover, all the tested bacterial strains showed the ability to degrade NAC by various metabolic routes. The NAC polymers were less effective bacterial inhibitors than NAC, but more effective at eradicating mature bacterial biofilms.


Subject(s)
Acetylcysteine/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Drinking Water/microbiology , Siloxanes/pharmacology , Acetylcysteine/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Siloxanes/chemistry , Water Purification
6.
Colloids Surf B Biointerfaces ; 172: 627-634, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30223245

ABSTRACT

Bacteria adapt to their living environment forming organised biofilms. The survival strategy makes them more resistant to disinfectants, which results in acute biofilm-caused infections, secondary water pollution by biofilm metabolites and bio-corrosion. New, efficient and environmentally friendly strategies must be developed to solve this problem. Water soluble N-acetyl derivative of L-cysteine (NAC) is a non-toxic compound of mucolytic and bacteriostatic properties that can interfere with the formation of biofilms. However, it can also be a source of C and N for undesired microorganisms, as well as a reason for some adverse human health effects. Consequently, novel procedures are required, that would decrease the take-up of NAC but not reduce its antibacterial properties. We have grafted N-acetyl-l-cysteine onto linear poly(vinylsilsesquioxanes) and poly(methylvinylsiloxanes) via thiol-ene addition. Antibacterial activity of the obtained hybrid materials (respectively, NAC-Si-1 and NAC-Si-2) was determined against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains. Native NAC inhibited growth of planktonic cells for the tested bacteria at concentration 0.25% w/v. Inhibition with equivalent solutions of the polymer derivatives was less effective due to the lack of SH groups. However, the tested polymers proved to be quite effective in eradication of mature biofilms. Treatment with 1% w/v emulsions of the hybrid polymers resulted in a significant reduction of viable cells in biofilm matrix despite the absence of thiol moieties. The effect was most pronounced for mature biofilms of S. aureus eradicated with NAC-Si-2.


Subject(s)
Acetylcysteine/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Organosilicon Compounds/chemistry , Siloxanes/chemistry , Water Microbiology , Anti-Bacterial Agents/pharmacology , Hydrodynamics , Light , Microbial Sensitivity Tests , Organosilicon Compounds/chemical synthesis , Siloxanes/chemical synthesis , Temperature , Wettability
7.
Antonie Van Leeuwenhoek ; 111(3): 373-383, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29058139

ABSTRACT

Yeast strains and acetic acid bacteria were isolated from spoiled soft drinks with characteristic flocs as a visual defect. Polymerase chain reaction and amplification of a partial region of the LSU rRNA gene identified the bacteria as Asaia spp. Sequence analysis of the D1/D2 region of the 26S rDNA in turn identified the yeast isolates as Wickerhamomyces anomalus, Dekkera bruxellensis and Rhodotorula mucilaginosa. The hydrophobicity and adhesion properties of the yeasts were evaluated in various culture media, taking into account the availability of nutrients and the carbon sources. The highest hydrophobicity and best adhesion properties were exhibited by the R. mucilaginosa cells. Our results suggest that Asaia spp. bacterial cells were responsible for the formation of flocs, while the presence of yeast cells may help to strengthen the structure of co-aggregates.


Subject(s)
Acetic Acid/metabolism , Bacteria/classification , Bacteria/metabolism , Carbonated Beverages/microbiology , Food Microbiology , Microbial Consortia , Yeasts/classification , Bacteria/growth & development , Bacterial Adhesion , Biofilms , Yeasts/chemistry , Yeasts/growth & development
8.
J Sci Food Agric ; 92(6): 1304-10, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22083437

ABSTRACT

BACKGROUND: The effect of Brochothrix thermosphacta on the quality of meat and meat products is of vital importance in connection with Regulation EC/178/2002 extending the definition of unsafe foodstuffs to encompass all those which are unfit for human consumption. This study aimed to determine the prevalence of B. thermosphacta in meat and meat products packaged under different conditions and to estimate the effect of B. thermosphacta strains on product quality based on their protein and lipid degradation activity. RESULTS: B. thermosphacta was absent in only two of 132 samples. All other samples were contaminated with this bacterium (10(1) to 10(9) cfu g(-1) meat and 10(2) to 10(8) cfu g(-1) meat product). In products stored under high-oxygen atmosphere Brochothrix cells accounted for almost 100% total mesophilic count (TMC) and below 50% TMC in oxygen-free atmosphere. While the tested B. thermosphacta strains did not show any proteolytic activity, most of them displayed lipolytic activity at 25 °C and some even at 4 °C. CONCLUSION: B. thermosphacta is commonly present in meat and meat products packaged in different ways. This bacterium can display lipolytic activity also at refrigeration temperature. Its over-proliferation can be inhibited through vacuum packaging or packaging under a modified atmosphere with reduced oxygen content.


Subject(s)
Atmosphere , Brochothrix/metabolism , Food Microbiology , Food Packaging/methods , Food Preservation/methods , Meat Products/microbiology , Vacuum , Colony Count, Microbial , Food Safety , Lipolysis , Meat/microbiology , Oxygen , Proteolysis , Refrigeration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...