Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 108(5): 052504, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22400930

ABSTRACT

The first direct mass measurement of {6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of {8}He was determined with improved precision over our previous measurement. The obtained masses are m({6}He)=6.018 885 883(57) u and m({8}He)=8.033 934 44(11) u. The {6}He value shows a deviation from the literature of 4σ. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) and 1.959(16) fm for {6}He and {8}He, respectively. We present a detailed comparison to nuclear theory for {6}He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.

2.
Phys Rev Lett ; 101(20): 202501, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19113333

ABSTRACT

In this Letter, we report a new mass for 11Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t_{1/2}=8.8 ms, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of ;{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of 7 more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11Li. This result is a remarkable confluence of nuclear and atomic physics.

3.
Phys Rev Lett ; 101(1): 012501, 2008 Jul 04.
Article in English | MEDLINE | ID: mdl-18764106

ABSTRACT

A high-precision Penning trap mass measurement of the exotic 8He nuclide (T(1/2)=119 ms) has been carried out resulting in a reduction of the uncertainty of the halo binding energy by over an order of magnitude. The new mass, determined with a relative uncertainty of 9.2 x 10(-8) (deltam=690 eV) is 13 keV less bound than the previously accepted value. The mass measurement is of great relevance for the recent charge-radius measurement of 8He [P. Mueller, Phys. Rev. Lett. 99, 252501 (2007).10.1103/PhysRevLett.99.252501]. The 8He mass is the first result from the newly-commissioned Penning trap: TITAN (TRIUMF's Ion Trap for Atomic and Nuclear science) at the ISAC (Isotope Separator and Accelerator) radioactive beam facility at TRIUMF.

SELECTION OF CITATIONS
SEARCH DETAIL
...